
Rethinking Adaptability in Wide-Area Stream Processing Systems

Albert Jonathan, Abhishek Chandra, and Jon Weissman

University of Minnesota Twin Cities

Abstract

Adaptability is an important property of stream process-

ing systems since the systems need to maintain low la-

tency and high throughput execution of long-running

queries. In a wide-area environment, dynamics are com-

mon not only because of the workload variability but also

the nature of wide-area network (WAN) bandwidth that

frequently changes. In this work, we study the adaptabil-

ity property of stream processing systems designed for a

wide-area environment. Specifically, we (1) discuss the

challenges of reconfiguring query executions in a wide-

area environment, (2) propose ideas how to adapt exist-

ing reconfiguration techniques used in centralized Cloud

to a wide-area environment, and (3) discuss the trade-

offs between them. A key finding is that the best adapta-

tion technique to use depends on the network conditions,

types of query, and optimization metrics.

1 Introduction

Streaming analytics has been increasingly popular due

to the real-time need of many big data analytics appli-

cations. This can be seen in a recent development of

various distributed stream processing systems to pro-

cess continuous data streams with low latency and high

throughput [26, 44, 24, 37, 6, 19]. Most of the work in

streaming analytics has focused on a centralized Cloud

environment. Unfortunately, using these systems for pro-

cessing geo-distributed data is very inefficient and it may

result in a wasteful resource utilization [41, 29, 40]. Ex-

amples of such analysis include real-time global trend

detection on social network, and real-time log monitor-

ing of geo-distributed CDN servers [28, 31].

Adopting existing centralized Cloud-based systems

into wide-area settings requires rethinking some of their

designs due to the fundamental differences of the run-

time environment. For example, centrally aggregating

geo-distributed data without WAN awareness has been

shown to be very inefficient due to the highly heteroge-

neous and limited WAN bandwidth. This may result in

19× higher latency [29] or 250× higher bandwidth uti-

lization [41] compared to the WAN-aware deployment.

In this paper, we rethink the adaptability property of

stream processing systems in a wide-area environment.

Adaptability is a key property of stream processing sys-

tems due to the long-running nature of stream queries.

Yet, runtime dynamics such as varying workload pat-

tern [21, 22], changes in network topology [18], occur-

rence of stragglers [3], node additions, and failures [12]

are common and inevitable in distributed systems. Thus,

the systems need to gracefully adapt to these dynamics

to maintain low latency and high throughput execution.

Existing work has addressed the adaptability property

of stream processing systems, but focuses on a central-

ized Cloud environment [7, 30, 11, 42, 39]. In such an

environment, dynamics are typically caused by workload

variability, stragglers, or node failures [3]. In a wide-area

environment, the scarce and heterogeneous WAN band-

width further adds extra challenges since it is highly dy-

namic in practice (topology changes every ∼5-10 min-

utes [15, 18]). Previous work [31] has addressed the

importance of adaptability in wide-area streaming ana-

lytics, but relies on aggregation and approximation that

may introduce errors, which may not be applicable for

queries that require exact computations.

In this paper, we discuss different reconfiguration ap-

proaches that can be used to handle WAN dynamics.

Specifically, we discuss the challenges of scale out in

wide-area settings and propose a reconfiguration tech-

nique that dynamically re-plans query executions based

on the WAN condition. We show that adopting these re-

configuration approaches into wide-area settings requires

rethinking of their designs due to the different assump-

tions of the environment. Finally, we discuss the trade-

offs between these approaches and how they can be used

in practice. A key finding is that the best adaptation tech-

nique to use depends on dynamic network conditions.

2 Background & Related Work

2.1 Distributed Stream Processing Systems

Stream Processing Models: A streaming analytics

query is typically written using a SQL-like declarative

language [36, 4]. It is translated by a query optimizer

into a query plan represented as a directed acyclic graph

(DAG), where the vertices are stream operators and the

edges are data flow. A job scheduler then takes the DAG

and deploys each of the operators based on its schedul-

ing policy (e.g., locality-aware). Once a query has been

deployed, it typically runs continuously [2, 19, 39].

Today’s distributed stream processing systems can be

generally categorized based on their processing models:

Bulk Synchronous Parallel (BSP) model, and Continu-

ous Operator (CO) model. The BSP model partitions

continuous data streams into a set of micro batches and

processes each batch similar to the batch processing sys-

tems [44, 8]. On the other hand, the CO model processes

each data/event independently as it arrives (except for ex-

plicit grouping such as windowing) [37, 6, 24]. In this

work, we consider the CO model since in general it pro-

vides lower latency and higher throughput execution [10]

and more importantly, it incurs less communication over-

head [39] that is critical in wide-area settings.

Adaptability in Stream Processing Systems: Adapt-

ability is an important property of stream processing sys-

tems because most stream workloads are long-running

and runtime dynamics are inevitable in distributed sys-

tems. These dynamics include varying workload pat-

tern [21, 22], stragglers [3], and even failures [12]. Thus,

distributed systems designed for long-running workloads

need to gracefully adapt to runtime dynamics without

sacrificing their normal execution performance.

Stream processing systems that use the BSP model

typically adapt to dynamics during the synchronization

stage between two coordination intervals. At this stage,

a job scheduler may quickly reconfigure an already-

running job by rescheduling or scaling out/in each op-

erator. Recent work on this model has proposed a tech-

nique to handle runtime changes by dynamically adapt-

ing the processing interval [11] and disjoining the pro-

cessing and synchronization intervals [39]. On the other

hand, stream processing systems that use the CO model

typically integrate scale out and fault tolerance using a

checkpoint-then-restart mechanism [7, 30, 2, 20]. In this

mechanism, the systems will (1) synchronize operators

to checkpoint their states using distributed checkpoint-

ing algorithm [9, 27, 5], (2) suspend the execution for re-

configuration, then (3) restart the execution from the last

checkpointed state. The checkpoint stage is particularly

useful for ensuring exactly-once processing semantic.

2.2 Wide-Area Data Analytics

Recent work in wide-area data analytics [29, 41] has

addressed the importance of WAN-aware job schedul-

ing that is critical to the overall query execution perfor-

mance. Clarinet [40] further addresses the importance of

bringing the WAN awareness into the query optimizer in

selecting the optimal execution plan based on the WAN

bandwidth availability, while Gaia [16] proposes opti-

mization techniques for geo-distributed machine learn-

ing. Although their work are related to ours, they assume

that WAN bandwidth between sites are static and the

workloads remain stable over the runtime of the queries,

which is reasonable for short-running queries. However,

these assumptions are not reasonable for streaming ana-

lytics queries that are long-running.

Other work [28, 17, 14, 31] has also looked at the

problem of streaming analytics in a wide-area environ-

ment. Pietzuch et al. [28] focuses on an operator place-

ment problem in an ad-hoc wide-area topology, while

Hwang et al. [17] proposes a replication technique to en-

sure reliable stream processing over the WAN. Heintz et

al. [14] proposes an algorithm that trades-off timeliness

and accuracy in the context of windowed-group aggrega-

tion. JetStream [31] models data streams using the data

cube abstraction and proposes aggregation/degradation

techniques to handle WAN bandwidth constraints. Al-

though aggregating data streams as proposed in Jet-

Stream can handle WAN dynamics, it may introduce a

certain degree of errors which may not be applicable for

applications that require exact processing (e.g., billing

query). Instead, it would be desirable to adapt to runtime

dynamics without sacrificing the quality of the queries.

2.3 Dynamics in Wide-Area Environment

Most of the work in adaptive stream processing systems

has focused on a centralized Cloud environment where

the main sources of dynamics are workload variability

and stragglers that lead to computational resource bottle-

necks. In this case, a system can reconfigure a query ex-

ecution by provisioning more computing resources and

scaling out some of its operators across multiple worker

nodes [7, 34, 43]. In a wide-area environment, the

limited WAN bandwidth between sites is typically the

main cause of bottleneck [29, 41, 40]. Furthermore, this

WAN constraint is very dynamic in practice [18, 15].

In practice, WAN topology that connects multiple geo-

distributed sites may change every 5 to 10 minutes [18].

Thus, how stream processing systems adapt to WAN dy-

namics will define their performance. In this paper, we

discuss how to adapt existing centralized Cloud-based re-

configuration techniques to wide-area stream processing

systems to handle WAN dynamics.

Figure 1: Scale out/in operators across sites

3 Dynamic Reconfiguration

In this section, we discuss different reconfiguration

approaches in wide-area stream processing systems.

Specifically, we discuss how to scale out stream oper-

ators (§3.1) and propose a query re-planning technique

(§3.2) to adapt to wide-area dynamics.

3.1 Scaling Out Resources Across Sites

A common approach to handle runtime dynamics in a

centralized Cloud environment is by scaling out/in op-

erators across multiple worker nodes within a data cen-

ter/site [30, 42, 7, 43, 34, 25]. Existing research has pro-

posed techniques to ensure the semantic correctness [30]

and how to re-distribute workload across multiple worker

nodes [43, 34, 25]. This reconfiguration approach only

changes the deployment and the parallelism of each op-

erator without changing the query execution plan itself.

Scaling out operators within a site can be considered as

a scale up case in wide-area settings, which can be used

to solve computational resource bottleneck. However,

this does not handle potential bottleneck in data trans-

mission over the WAN that may be caused by an increas-

ing data rate and/or a decreasing bandwidth capacity. We

consider the load of a link from Site-S to Site-D as a ra-

tio between the data transmission rate over its bandwidth

capacity (LD
S = streamRate

bandwidthS,D
). A ratio > 1 indicates that

the network link is contended which may result in stale

results and performance degradation.

Figure 1 presents an example showing how scaling out

operators across sites may reduce the load of overloaded

links. Suppose that the stream rate from Site-S to Site-

A is higher than its bandwidth capacity (LA
S > 1) which

results in a bandwidth contention. In this case, scaling

out operators from Site-A to Site-B and partitioning the

data streams across both sites can reduce LA
S . However,

this may impose an additional overhead of aggregating

the results of the scaled operators. Thus, the system may

scale in the operators back to a single-site deployment

when the load decreases (LA
S < 1).

Scaling out operators can also handle overloaded links

between sites that are used for transmitting data streams

to downstream operators. In streaming analtyics, the out-

put data rate typically depends on its input rate as well as

 0

 50

 100

 150

 200

 250

 300

 0 40 80 120 160In
te

r-
s
it
e

 b
a

n
d

w
id

th
 (

M
b

p
s
)

Network links (sorted on bandwidth)

(a) Bandwidth heterogeneity

 0

 50

 100

 150

 200

 250

 300

In-Region Inter-Region

In
te

r-
s
it
e

 b
a

n
d

w
id

th
 (

M
b

p
s
)

Quartiles

(b) Bandwidth distribution

Figure 2: Inter-site EC2 bandwidth distribution

the type of the operators, and most operators (e.g., se-

lection/projection/filter/reduce) result in a reduced out-

put rate [1]. In this case, scaling out operators across

sites may also reduce the egress links’ load of a particu-

lar site. For example, if the link from Site-A to Site-C is

overloaded (LC
A > 1), scaling out operators to Site-B may

reduce LC
A by distributing its load with LC

B.

Operator Migration and Fault Tolerance: Alterna-

tively, an operator can be migrated to another site with-

out changing its parallelism, p. This can be viewed as

a special case of a scale out where the scheduler essen-

tially scales the operator out with a parallelism of 0 at the

original site and p at the new site. The question on how

much parallelism an operator should have at each site

itself depends on the scaling policy, which will be dis-

cussed later. The scale out mechanism can also be used

to handle operator failures since restarting a failed op-

erator can be viewed as scaling out the operator from 0

parallelism to p as shown in a previous work [7].

Where to scale: One question that needs to be addressed

in scaling out operators across multiple sites is where an

operator should be scaled out to. In a centralized envi-

ronment, this question may not be as critical as in a wide-

area environment since network links within a data center

typically have a very high bandwidth (15× to 60× higher

than inter-data center bandwidth [16]) and they are less

heterogeneous, as presented in Figure 2(a) which shows

the measured bandwidth links between 14 Amazon EC2

data centers. We can see that the bandwidth of a link that

connects two sites can be as high as 20× compared to the

other links. This bandwidth heterogeneity will affect the

overhead of scaling operators with large states [42] since

it requires distributing the states over the WAN. Thus,

unlike in a centralized Cloud environment, scaling out

resources in a wide-area environment needs to consider

the heterogeneity of WAN bandwidth.

We propose a solution to mitigate the scale out over-

head by scaling out operators only to sites that are lo-

cated within the same region/continent. The key insight

behind this policy is based on the observation that WAN

bandwidth between sites that are located within the same

region is typically much higher than those that connect

sites across regions (Figure 2(b)). Hence, scaling out op-

erators within a region may mitigate both the state mi-

gration and the aggregation overhead.

 0

 2000

 4000

 6000

 8000

00
:0

0

01
:0

0

02
:0

0

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0T
h
ro

u
g
h
p
u
t
(t

w
e
e
ts

/s
e
c
)

Time (mm:ss)

Ideal
Dynamic

Static
Static-2

(a) Throughput over time

 0

 2000

 4000

 6000

 8000

Id
ea

l

Sta
tic

Sta
tic

-2

D
yn

am
icT

h
ro

u
g
h
p
u
t
(t

w
e
e
ts

/s
e
c
)

(b) Average throughput

Figure 3: Benefit of scale out during network dynamic

Scale out policy: There has been work that looks at

load balancing algorithms for stream processing systems

within a cluster environment [35, 43, 7, 13]. They typ-

ically adopt a scale out policy based on CPU utiliza-

tion [7], the load distribution among worker nodes [25,

32] or rely on application writers to determine the proper

policies specifically for their applications [42, 30, 33].

The problem of load sharing in wide-area stream-

ing analytics is challenging due to the highly heteroge-

neous and dynamic WAN bandwidth. In the case of

scaling out stateless operators, the system can adapt a

shuffle-based load balancing algorithm by incorporat-

ing a weight factor to each link that defines its avail-

able bandwidth. Thus, the workload will be distributed

proportionally based on the available bandwidth of each

link. The weight factor of each link needs to be updated

as the bandwidth changes. In the case of stateful opera-

tors, a shuffle-based load balancing may not be applica-

ble since it imposes an additional aggregation overhead.

Recent work [25] has proposed an alternative key-based

load balancing algorithm based on the ”power of two

choices” [23]. Although this algorithm can be used in

practice, we are still investigating how to adapt this pol-

icy into a wide-area environment.

Preliminary Experiment: We conducted a preliminary

experiment to show the benefit of scale out to handle

WAN dynamics. We implemented our reconfiguration

technique as a prototype module on Apache Flink 1 and

deployed our system on a localized CloudLab 2 cluster

that emulated a real wide-area environment. The band-

width between sites were controlled using iperf and we

introduced dynamics by periodically changing the band-

width between sites by 10% to 30% with a maximum

deviation of 50% from the original bandwidth.

The workload was based on a real Twitter trace whose

playback rate had been scaled to approximately 8000

tweets/sec to reflect the actual rate of Twitter [38]. We

deployed an application that periodically outputs the top-

k most popular topics and their sentiment scores for each

country. The tweets were distributed based on their geo-

location information across 4 different sites.

1http://flink.apache.org/
2https://www.cloudlab.us

Figure 4: Different query plans for the same query

Figure 3 shows the benefit of scale out. All approaches

executed the same execution plan. Both Static and

Static-2 did not react to runtime dynamics and the

only difference between them was that the latter used 2×

computational resources. We see that a higher number of

computational resources did not affect the performance

since the bottleneck was in the network. On the other

hand, the Dynamic reacted to load changes by scaling

out operators to nearby sites whenever the throughput

dropped below 5000 tweets/sec. We also plotted Ideal

showing the ideal case where no bandwidth was con-

tended. We see that although the Dynamic had a couple

throughput drops caused by the transient suspension of

execution, it resulted in a higher overall throughput com-

pared to the static cases (Figure 3(b)). We believe this

overhead can be mitigated by scaling out operators and

redistributing the streams concurrently.

3.2 Changing Query Execution Plans

In this section we propose a query re-planning technique

to adapt to WAN dynamics. Our motivation is based on

the observation that the optimal execution plan of a wide-

area data analytics query may change over time depend-

ing on the WAN bandwidth availability [40].

Consider an example in Figure 4 which shows two dif-

ferent execution plans for the same query. It consumes

input streams from 3 sources: A, B, and C that are lo-

cated at different sites, and joins them using a full hash

join, which is commutative. The query optimizer may

prefer the first plan if the bandwidth is sufficient since it

consumes lower bandwidth (20MBps) compared to the

second plan (30MBps). However, if the link from Site-

A to Site-B is overloaded, while the link from Site-B to

Site-C has sufficient bandwidth, the second plan will re-

sult in a better performance. Thus, the query optimizer

may re-plan the query based on the WAN condition.

Re-planning queries with stateful operators: The

main challenge in re-planning a query is in migrating

the states of stateful operators. Although the query op-

timizer guarantees the correctness of executing differ-

ent plans, they may have different intermediate operators

with different state semantics. For example, the state of

σ(A ⊲⊳ B) may not be the same as σ(B ⊲⊳C). Thus, the

state of σ(A ⊲⊳ B) cannot be migrated.

 0

 2000

 4000

 6000

 8000

00
:0

0

01
:0

0

02
:0

0

03
:0

0

04
:0

0

05
:0

0

06
:0

0

07
:0

0

08
:0

0T
h
ro

u
g
h
p
u
t
(t

w
e
e
ts

/s
e
c
)

Time (mm:ss)

Plan-1
Plan-2

Plan-3
Plan-4

(a) Throughput over time

 0

 2000

 4000

 6000

 8000

Pla
n-

1

Pla
n-

2

Pla
n-

3

Pla
n-

4T
h
ro

u
g
h
p
u
t
(t

w
e
e
ts

/s
e
c
)

(b) Average throughput

Figure 5: Different query plan performance

In order to ensure the exactly once processing seman-

tic when changing a query plan, the query has to have

finite states where reconfiguration can be done at the end

of the state interval. This is similar to the coordination in-

terval in the BSP model. For example, in the case of win-

dow operation that groups streams every T time units, the

reconfiguration can be performed at the end of the inter-

val T once the states have been processed or re-initiated.

Thus, reordering operators is only applicable for applica-

tions that are either stateless or have finite states.

Preliminary Experiment: To show the benefit of re-

planning a query execution, we conducted an experiment

where we compared 4 different execution plans for the

same query. The only difference between them is the

order of the aggregation operators. The setup was the

same as the setup in §3.1. Figure 5(a) shows that none of

the plans performs the best at all time. Although Plan-2

resulted in the highest overall throughput (Figure 5(b)),

Plan-3 and Plan-4 outperformed the other plans at a cer-

tain interval. This shows that changing a query’s plan

may improve its overall execution performance.

4 Discussion

Approximation vs. Reconfiguration: In general, re-

ducing stream rate using approximation/aggregation is

highly desirable to mitigate WAN bandwidth utilization.

However, they may introduce a certain degree of error

or inaccuracy that may not be applicable for applications

that require exact computation. On the other hand, recon-

figuration does not affect the quality of an execution but,

it may incurs higher overhead. In fact, both aggregation

and reconfiguration can be jointly used to handle runtime

dynamics. For example, a system may first reduce stream

rate and start reconfiguring when the approximation re-

sults in a significant loss of quality. Alternatively, it may

scale out first to maintain high accuracy and use approx-

imation if it is unable to satisfy the performance goal.

Thus, both techniques can be used together to maintain a

high quality result while maintaining a high performance

execution in the face of network constraint.

Scale Out vs. Query Re-planning: We conducted

an initial experiment that explores different cases where

scale out can outperform query re-planning and vice

 0

 2000

 4000

 6000

 8000

 10000

Case-1 Case-2 Case-3 Case-4T
h
ro

u
g
h
p
u
t
(t

w
e
e
ts

/s
e
c
)

Different network/workload conditions

Static Scale Out Re-Plan

Figure 6: Benefit of Scale Out vs. Re-planning

versa (see Figure 6). The workload that was used in

this experiment is the same as in the two previous ex-

periments. In a certain case, both techniques can handle

runtime dynamics (Case-2). However, we observed that

scale out typically consumes more resources and incurs

extra aggregation overhead, which can be mitigated if

the query optimizer can identify an alternative execution

plan that better fits the condition (Case-3). However, re-

planning also has a drawback of having higher reconfig-

uration overhead and limited applicability as discussed

in §3.2. Scale out may also result in better performance

by distributing the workload across multiple sites in the

case where the query optimizer is unable to find an al-

ternative plan that avoids overloaded links (Case-4). We

believe that the decision as to which approach should be

used highly depends on many factors such as the type of

dynamics and queries, and this requires further research.

Reconfiguration for concurrent queries: In addition

to handling runtime dynamics, reconfiguration can also

be used to optimize the deployment of multiple concur-

rent queries. Since, streaming analytics queries may not

be batch-scheduled in general, rescheduling existing ex-

ecutions or changing their query plans may result in a

global optimal deployment. We are currently looking at

the opportunity of reconfiguration for optimizing multi-

ple concurrent query executions.

5 Conclusion

In this paper, we study the problem of adaptability in

wide-area stream processing systems. We discuss dif-

ferent reconfiguration approaches: scale out and query

re-planning to adapt to WAN dynamics. Specifically, we

address the challenges of adapting existing reconfigura-

tion techniques into a wide-area environment, propose

initial ideas on how to efficiently apply these techniques,

and discuss the trade-offs between them. We believe that

further research needs to be done in this area which in-

cludes minimizing the reconfiguration overhead, the re-

configuration policy, and state management across sites.

6 Acknowledgement

The authors would like to acknowledge grant NSF CNS-

1619254 and CNS-1717834 that supported this research.

We also thank the anonymous HotCloud reviewers for

their insightful feedback.

References

[1] AGARWAL, S., KANDULA, S., BRUNO, N., WU, M.-C., STO-

ICA, I., AND ZHOU, J. Re-optimizing data-parallel computing.

In Proceedings of the 9th USENIX conference on Networked Sys-

tems Design and Implementation (2012), USENIX Association,

pp. 21–21.

[2] AKIDAU, T., BALIKOV, A., BEKIROĞLU, K., CHERNYAK, S.,

HABERMAN, J., LAX, R., MCVEETY, S., MILLS, D., NORD-

STROM, P., AND WHITTLE, S. Millwheel: fault-tolerant stream

processing at internet scale. Proceedings of the VLDB Endow-

ment 6, 11 (2013), 1033–1044.

[3] ANANTHANARAYANAN, G., GHODSI, A., SHENKER, S., AND

STOICA, I. Effective straggler mitigation: Attack of the clones.

In NSDI (2013), vol. 13, pp. 185–198.

[4] ARMBRUST, M., XIN, R. S., LIAN, C., HUAI, Y., LIU, D.,

BRADLEY, J. K., MENG, X., KAFTAN, T., FRANKLIN, M. J.,

GHODSI, A., ET AL. Spark sql: Relational data processing in

spark. In Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data (2015), ACM, pp. 1383–

1394.

[5] CARBONE, P., EWEN, S., FÓRA, G., HARIDI, S., RICHTER,

S., AND TZOUMAS, K. State management in apache flink R©:

consistent stateful distributed stream processing. Proceedings of

the VLDB Endowment 10, 12 (2017), 1718–1729.

[6] CARBONE, P., KATSIFODIMOS, A., EWEN, S., MARKL, V.,

HARIDI, S., AND TZOUMAS, K. Apache flink: Stream and batch

processing in a single engine. Bulletin of the IEEE Computer

Society Technical Committee on Data Engineering 36, 4 (2015).

[7] CASTRO FERNANDEZ, R., MIGLIAVACCA, M., KALY-

VIANAKI, E., AND PIETZUCH, P. Integrating scale out and fault

tolerance in stream processing using operator state management.

In Proceedings of the 2013 ACM SIGMOD international confer-

ence on Management of data (2013), ACM, pp. 725–736.

[8] CHAMBERS, C., RANIWALA, A., PERRY, F., ADAMS, S.,

HENRY, R. R., BRADSHAW, R., AND WEIZENBAUM, N.

Flumejava: easy, efficient data-parallel pipelines. In ACM Sig-

plan Notices (2010), vol. 45, ACM, pp. 363–375.

[9] CHANDY, K. M., AND LAMPORT, L. Distributed snapshots: De-

termining global states of distributed systems. ACM Transactions

on Computer Systems (TOCS) 3, 1 (1985), 63–75.

[10] CHINTAPALLI, S., DAGIT, D., EVANS, B., FARIVAR, R.,

GRAVES, T., HOLDERBAUGH, M., LIU, Z., NUSBAUM, K.,

PATIL, K., PENG, B. J., ET AL. Benchmarking streaming com-

putation engines: storm, flink and spark streaming. In Parallel

and Distributed Processing Symposium Workshops, 2016 IEEE

International (2016), IEEE, pp. 1789–1792.

[11] DAS, T., ZHONG, Y., STOICA, I., AND SHENKER, S. Adaptive

stream processing using dynamic batch sizing. In Proceedings of

the ACM Symposium on Cloud Computing (2014), ACM, pp. 1–

13.

[12] FORD, D., LABELLE, F., POPOVICI, F. I., STOKELY, M.,

TRUONG, V.-A., BARROSO, L., GRIMES, C., AND QUINLAN,

S. Availability in globally distributed storage systems. In OSDI

(2010), vol. 10, pp. 1–7.

[13] GEDIK, B. Partitioning functions for stateful data parallelism in

stream processing. The VLDB Journal 23, 4 (2014), 517–539.

[14] HEINTZ, B., CHANDRA, A., AND SITARAMAN, R. K. Trading

timeliness and accuracy in geo-distributed streaming analytics. In

Proceedings of the Seventh ACM Symposium on Cloud Comput-

ing (2016), ACM, pp. 361–373.

[15] HONG, C.-Y., KANDULA, S., MAHAJAN, R., ZHANG, M.,

GILL, V., NANDURI, M., AND WATTENHOFER, R. Achieving

high utilization with software-driven wan. In ACM SIGCOMM

Computer Communication Review (2013), vol. 43, ACM, pp. 15–

26.

[16] HSIEH, K., HARLAP, A., VIJAYKUMAR, N., KONOMIS, D.,

GANGER, G. R., GIBBONS, P. B., AND MUTLU, O. Gaia: Geo-

distributed machine learning approaching lan speeds. In NSDI

(2017), pp. 629–647.

[17] HWANG, J.-H., CETINTEMEL, U., AND ZDONIK, S. Fast and

reliable stream processing over wide area networks. In Data En-

gineering Workshop, 2007 IEEE 23rd International Conference

on (2007), IEEE, pp. 604–613.

[18] JAIN, S., KUMAR, A., MANDAL, S., ONG, J., POUTIEVSKI,

L., SINGH, A., VENKATA, S., WANDERER, J., ZHOU, J., ZHU,

M., ET AL. B4: Experience with a globally-deployed software

defined wan. In ACM SIGCOMM Computer Communication Re-

view (2013), vol. 43, ACM, pp. 3–14.

[19] KULKARNI, S., BHAGAT, N., FU, M., KEDIGEHALLI, V.,

KELLOGG, C., MITTAL, S., PATEL, J. M., RAMASAMY, K.,

AND TANEJA, S. Twitter heron: Stream processing at scale. In

Proceedings of the 2015 ACM SIGMOD International Confer-

ence on Management of Data (2015), ACM, pp. 239–250.

[20] LIN, W., FAN, H., QIAN, Z., XU, J., YANG, S., ZHOU, J.,

AND ZHOU, L. Streamscope: Continuous reliable distributed

processing of big data streams. In NSDI (2016), vol. 16, pp. 439–

453.

[21] Stream-processing with mantis. https:

//medium.com/netflix-techblog/

stream-processing-with-mantis-78af913f51a6,

year=2016.

[22] MEISNER, D., SADLER, C. M., BARROSO, L. A., WEBER, W.-

D., AND WENISCH, T. F. Power management of online data-

intensive services. In ACM SIGARCH Computer Architecture

News (2011), vol. 39, ACM, pp. 319–330.

[23] MITZENMACHER, M. The power of two choices in randomized

load balancing. IEEE Transactions on Parallel and Distributed

Systems 12, 10 (2001), 1094–1104.

[24] MURRAY, D. G., MCSHERRY, F., ISAACS, R., ISARD, M.,

BARHAM, P., AND ABADI, M. Naiad: a timely dataflow sys-

tem. In Proceedings of the Twenty-Fourth ACM Symposium on

Operating Systems Principles (2013), ACM, pp. 439–455.

[25] NASIR, M. A. U., MORALES, G. D. F., KOURTELLIS, N., AND

SERAFINI, M. When two choices are not enough: Balancing

at scale in distributed stream processing. In Data Engineering

(ICDE), 2016 IEEE 32nd International Conference on (2016),

IEEE, pp. 589–600.

[26] NEUMEYER, L., ROBBINS, B., NAIR, A., AND KESARI, A. S4:

Distributed stream computing platform. In Data Mining Work-

shops (ICDMW), 2010 IEEE International Conference on (2010),

IEEE, pp. 170–177.

[27] NOGHABI, S. A., PARAMASIVAM, K., PAN, Y., RAMESH, N.,

BRINGHURST, J., GUPTA, I., AND CAMPBELL, R. H. Samza:

stateful scalable stream processing at linkedin. Proceedings of

the VLDB Endowment 10, 12 (2017), 1634–1645.

[28] PIETZUCH, P., LEDLIE, J., SHNEIDMAN, J., ROUSSOPOULOS,

M., WELSH, M., AND SELTZER, M. Network-aware operator

placement for stream-processing systems. In Data Engineering,

2006. ICDE’06. Proceedings of the 22nd International Confer-

ence on (2006), IEEE, pp. 49–49.

[29] PU, Q., ANANTHANARAYANAN, G., BODIK, P., KANDULA,

S., AKELLA, A., BAHL, P., AND STOICA, I. Low latency geo-

distributed data analytics. In ACM SIGCOMM Computer Com-

munication Review (2015), vol. 45, ACM, pp. 421–434.

[30] QIAN, Z., HE, Y., SU, C., WU, Z., ZHU, H., ZHANG, T.,

ZHOU, L., YU, Y., AND ZHANG, Z. Timestream: Reliable

stream computation in the cloud. In Proceedings of the 8th ACM

European Conference on Computer Systems (2013), ACM, pp. 1–

14.

[31] RABKIN, A., ARYE, M., SEN, S., PAI, V. S., AND FREEDMAN,

M. J. Aggregation and degradation in jetstream: Streaming ana-

lytics in the wide area. In NSDI (2014), vol. 14, pp. 275–288.

[32] RIVETTI, N., QUERZONI, L., ANCEAUME, E., BUSNEL, Y.,

AND SERICOLA, B. Efficient key grouping for near-optimal load

balancing in stream processing systems. In Proceedings of the

9th ACM International Conference on Distributed Event-Based

Systems (2015), ACM, pp. 80–91.

[33] SATZGER, B., HUMMER, W., LEITNER, P., AND DUSTDAR,

S. Esc: Towards an elastic stream computing platform for the

cloud. In Cloud Computing (CLOUD), 2011 IEEE International

Conference on (2011), IEEE, pp. 348–355.

[34] SCHNEIDER, S., ANDRADE, H., GEDIK, B., BIEM, A., AND

WU, K.-L. Elastic scaling of data parallel operators in stream

processing. In Parallel & Distributed Processing, 2009. IPDPS

2009. IEEE International Symposium on (2009), IEEE, pp. 1–12.

[35] SHAH, M. A., HELLERSTEIN, J. M., CHANDRASEKARAN, S.,

AND FRANKLIN, M. J. Flux: An adaptive partitioning opera-

tor for continuous query systems. In Data Engineering, 2003.

Proceedings. 19th International Conference on (2003), IEEE,

pp. 25–36.

[36] THUSOO, A., SARMA, J. S., JAIN, N., SHAO, Z., CHAKKA, P.,

ZHANG, N., ANTONY, S., LIU, H., AND MURTHY, R. Hive-a

petabyte scale data warehouse using hadoop. In Data Engineer-

ing (ICDE), 2010 IEEE 26th International Conference on (2010),

IEEE, pp. 996–1005.

[37] TOSHNIWAL, A., TANEJA, S., SHUKLA, A., RAMASAMY, K.,

PATEL, J. M., KULKARNI, S., JACKSON, J., GADE, K., FU,

M., DONHAM, J., ET AL. Storm@ twitter. In Proceedings of the

2014 ACM SIGMOD international conference on Management of

data (2014), ACM, pp. 147–156.

[38] Twitter statistics. http://www.internetlivestats.com/

twitter-statistics/, year=2017.

[39] VENKATARAMAN, S., PANDA, A., OUSTERHOUT, K., ARM-

BRUST, M., GHODSI, A., FRANKLIN, M. J., RECHT, B., AND

STOICA, I. Drizzle: Fast and adaptable stream processing at

scale. In Proceedings of the 26th Symposium on Operating Sys-

tems Principles (2017), ACM, pp. 374–389.

[40] VISWANATHAN, R., ANANTHANARAYANAN, G., AND

AKELLA, A. Clarinet: Wan-aware optimization for analytics

queries. In OSDI (2016), vol. 16, pp. 435–450.

[41] VULIMIRI, A., CURINO, C., GODFREY, P. B., JUNGBLUT, T.,

PADHYE, J., AND VARGHESE, G. Global analytics in the face

of bandwidth and regulatory constraints. In NSDI (2015), vol. 7,

pp. 7–8.

[42] WU, Y., AND TAN, K.-L. Chronostream: Elastic stateful stream

computation in the cloud. In Data Engineering (ICDE), 2015

IEEE 31st International Conference on (2015), IEEE, pp. 723–

734.

[43] XING, Y., ZDONIK, S., AND HWANG, J.-H. Dynamic load dis-

tribution in the borealis stream processor. In Data Engineering,

2005. ICDE 2005. Proceedings. 21st International Conference on

(2005), IEEE, pp. 791–802.

[44] ZAHARIA, M., DAS, T., LI, H., SHENKER, S., AND STOICA,

I. Discretized streams: An efficient and fault-tolerant model for

stream processing on large clusters. HotCloud 12 (2012), 10–10.

