Locality-Aware Load Sharing in Mobile Cloud Computing

Albert Jonathan
University of Minnesota
Minneapolis, MN
albert@cs.umn.edu

ABSTRACT

The past few years have seen a growing number of mobile and
sensor applications that rely on Cloud support. The role of the
Cloud is to allow these resource-limited devices to offload and exe-
cute some of their compute-intensive tasks in the Cloud for energy
saving and/or faster processing. However, such offloading to the
Cloud may result in high network overhead which is not suitable
for many mobile/sensor applications that require low latency. So,
people have looked at an alternative Cloud design whose resources
are located at the edge of the Internet, called Edge Cloud. Although
the use of Edge Cloud can mitigate the offloading overhead, the
computational power and network bandwidth of Edge Cloud’s re-
sources are typically much more limited compared to the central-
ized Cloud and hence are more sensitive to workload variation (e.g.,
due to CPU or I/O contention). In this paper, we propose a locality-
aware load sharing technique that allows edge resources to share
their workload in order to maintain the low latency requirement
of Mobile-Cloud applications. Specifically, we study how to deter-
mine which edge nodes should be used to share the workload with
and how much of the workload should be shared to each node.
Our experiments show that our locality-aware load sharing tech-
nique is able to maintain low average end-to-end latency of mobile
applications with low latency variation, while achieving good uti-
lization of resources in the presence of a dynamic workload.

KEYWORDS
Mobile Cloud Computing, Edge Cloud, Load Sharing

ACM Reference Format:

Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2017. Locality-Aware
Load Sharing in Mobile Cloud Computing. In Proceedings of UCC ’17: 10th
International Conference on Utility and Cloud Computing (UCC ’17). ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3147213.3147228

1 INTRODUCTION

The past few years have seen a growing number of devices that
are connected to the Internet. The type of devices varies from stati-
cally installed public sensors such as smart traffic light systems and
weather forecasting sensors to privately owned mobile devices !

!n this paper, we refer to any type of resource-limited devices as mobile devices

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

UCC 17, December 5-8, 2017, Austin, TX, USA

© 2017 Association for Computing Machinery.

ACM ISBN 978-1-4503-5149-2/17/12...$15.00
https://doi.org/10.1145/3147213.3147228

Abhishek Chandra
University of Minnesota
Minneapolis, MN
chandra@cs.umn.edu

Jon Weissman
University of Minnesota
Minneapolis, MN
jon@cs.umn.edu

such as smart phones, smart watches, wearable health sensors, etc. [1,
3, 36, 39]. This rapid growth is predicted to continue increasing as
Cisco estimates that there will be approximately 50 billion devices
that are connected to the Internet by 2020 [10].

Today’s mobile devices are still facing challenges due to their
limited resources such as CPUs, storage, and battery power. Yet,
these resources will be unable to satisfy most of today’s mobile
applications that require low latency to the users while they con-
stantly produce or consume data [9, 21, 30]. Recent research has
looked at the opportunity of integrating Cloud Computing plat-
forms that provide much more powerful computation and/or stor-
age resources to assist many mobile applications. Furthermore, peo-
ple have looked at an alternative Cloud design consisting of re-
sources that are located at the edge of the Internet, called Edge
Clouds [4, 18, 31, 35, 40, 43]. The main benefit of using an Edge
Cloud is to mitigate the overhead of computational offloading since
they are closer to the users 2, thus reducing the processing time
and/or saving energy consumption on the devices.

Although there have been a number of works that provide vari-
ous computational offloading techniques in the context of mobile-
edge computing [2, 8, 12], there are few works that have looked at
which edge nodes the computational should be offloaded to. The
problem of node selection for computational offloading is inter-
esting for a couple reasons: First, the type of edge resources are
typically highly heterogeneous in terms of both their computa-
tional power and latency to end-users. The resources vary from
edge servers provided by Internet service providers (ISPs) to net-
work access points and they provide varying network latency and
bandwidth. Second, the dynamic nature of workload makes the
node selection problem more challenging since resources in Edge
Cloud are typically much more limited compared to the centralized
Cloud’s resources. Although the mobility aspect of end-users may
add additional dynamic to the workload, we argue that the user’s
mobility is much less time sensitive compared to the changes in
workload. For example, trending topic spreads much faster com-
pared to human’s mobility.

In this paper, we propose a locality-aware load sharing tech-
nique in the context of Mobile-Edge Computing (MEC). Specifi-
cally, we study the problem of which nodes should be selected for
load sharing and how much workload should be shared to each of
the nodes while considering the heterogeneity aspect of the edge
nodes’ resources. Our goal is to maintain the low latency require-
ment of common mobile applications that are continuously pro-
ducing and consuming data in the case of runtime dynamics that
may cause a contention in a node’s network resources.

Our system constitutes different layers of Cloud resources rang-
ing from distant resource-rich Cloud servers to edge resources with

2The closeness is measured in term of network latency rather than actual physical
distance.

https://doi.org/10.1145/3147213.3147228
https://doi.org/10.1145/3147213.3147228

UCC 17, December 5-8, 2017, Austin, TX, USA

less computational resources that are closer to the end-users. It pro-
vides a location-based edge node discovery mechanism that allows
users to find the closest available nodes. The edge nodes in our
system are aware of the availability of their neighboring nodes. A
node is considered as a neighborto another node if they are located
close to each other. This neighborhood information is maintained
by each node and is used for workload sharing in the case of high
workload. To prevent sharing workload with a neighbor that has
already had high workload, each node periodically shares its load
information to all of its neighbors. This neighbor-awareness is use-
ful to guarantee low overhead in sharing a workload. This locality-
aware load sharing mechanism allows load sharing with little over-
head and thus is able to maintain the low latency requirement of
mobile applications in the case of workload dynamics.

We evaluate our system and techniques using a real geo-distributed

Edge Cloud platform deployed on PlanetLab [7] testbed. Our ex-
periments are based on a sample of real Twitter trace from De-
cember 2015 which consists of approximately 4 million tweets/day.
We show that our locality-aware load sharing technique is able to
better satisfy the application’s latency goal even when there is an
increase in the workload. We also show that our load sharing tech-
nique results in up to 1.5X and 3X lower latency for 95th percentile
latency compared to an Edge Cloud system that does not consider
load sharing and the centralized Cloud platform respectively.

2 BACKGROUND

Heterogeneous Edge Resources. Nodes in an Edge Cloud are
located at the edge of the Internet and hence are closer to the end-
users. They generally provide less computaional power but lower
latency to the end-users compared to the Data Center’s nodes. Edge
nodes are also typically more heterogeneous in terms of their com-
putational hardwares as well as network connectivity: cloudlets,
servers provided by ISPs, home servers, to access points that use
Wi-Fi, bluetooth, etc. To handle this heterogeneity, some works
have proposes a common interface and mechanism for mobile de-
vices by providing a virtualization layer that encapsulates a mobile-
application execution inside virtualized machines (VMs) or con-
tainers [19, 26, 31]. This mechanism allows variety of applications
from possibly different devices to run concurrently in isolation.

Computational Offloading in Mobile-Edge Computing. In the
context of Mobile-Edge Computing (MEC), the main purpose of
the Cloud is to support mobile devices by allowing them to offload
their data processing to the Cloud’s nodes for better performance
and/or saving energy consumption [8, 24, 25, 27]. For example, a
compute-intensive object/image analysis on a mobile device can
be processed on one of the Cloud’s nodes that is equipped with
GPUgs, leaving only the final image rendering to be processed on
the mobile device itself. Throughout the paper, we assume that the
decision on which parts of application programs that should be of-
floaded to the Cloud have already been made externally.

Low Latency Requirement of Mobile Applications. Many emerg-

ing mobile applications are latency sensitive since they are inter-
active applications [1, 6, 9]. For example, interactive collaborative
mobile games require continuous image processing and augmented

Albert Jonathan, Abhishek Chandra, and Jon Weissman

CENTRALIZED SERVERS

&

Application Developer
More Compute Power

Higher Latency

EDGE NODE S<
T Task
1 " 1
.
’

Heartbeat

! End-Users
(data producer & consumer)

1
|
\

Figure 1: Edge Cloud System Model

reality applications on wearable devices require very low latency
for better user experiences [15, 25, 42]. Many applications also re-
quire data aggregation from mobile devices. For example, a real
time event detection in a social network application that detects
earthquake needs to aggregate a vast number of microblogs that
are originated from a specific area and detect the trend. These ap-
plications require low latency while continuously producing and
consuming data. In a MEC environment, workload may change
frequently due to the nature of hotspots. Nevertheless, the Cloud
should satisfy each application’s desired goal regardless of the run-
time dynamics.

Location Property of Mobile Applications. Geographic or lo-
cation information has become an important factor for many mo-
bile/sensor applications. There are many applications that use and
rely on the users’ locations in providing their services. For example,
numerous recent augmented reality games rely on their users’ loca-
tions. Another example includes map-based applications and envi-
ronmental monitoring that use sensor-equipped mobile devices [22,
25, 33]. These applications share a common property of continu-
ous data production/consumption and they need the support from
Clouds’ resources for processing their data efficiently. Furthermore,
some of them rely on information aggregation from other nearby
users’ activities such as real-time traffic detection that needs to ag-
gregate information from nearby drivers to detect whether a cer-
tain road is congested and multi-player mobile games that need to
detect the availability of other players for matchmaking.

3 EDGE CLOUD MODEL & IMPLEMENTATION

In this section, we discuss the Edge Cloud system that we consider
throughout this paper. Figure 1 shows the system model. It consists
of 1) a set of components that are hosted in a centralized reliable
server: Node Manager and Job Manager; and 2) a set of edge nodes
that are distributed across geographic locations [18].

3.1 System Components

e End-Users and Applications. The end-users are any type of
resource-limited devices that rely on an Edge Cloud’s supports by
offloading their computational to the Cloud’s nodes. In this paper,
we mainly focus on a class of applications that requires low latency
while continuously producing and consuming data. We consider a

Locality-Aware Load Sharing in Mobile Cloud Computing

task as an instance of an application that is running on a node and
a task may consume one or more inputs from possibly different
input providers/end-users.

o Edge Nodes. The edge nodes are computational resources that
are geographically distributed. They provide a common interface
that allows end-users to offload their data to be processed on the
nodes.

o Node Manager. The Node Manager is responsible for monitor-
ing the availability of all nodes in the system. It uses a heartbeat
mechanism to detect node failures. Nodes that do not respond to
the heartbeat message in a timely manner will be considered un-
available. Each node information that is monitored by the Node
Manager is periodically shared to the Job Manager.

o Job Manager. The Job Manager provides an interface for appli-
cation developers 3 to submit their applications to the system. It is
responsible for scheduling, deploying, and managing all tasks that
are running on the nodes.

3.2 Implementation

Computational Offloading. All tasks that are running on our
edge nodes are encapsulated inside a virtualized layer and thus
are independent of the applications. This computational offload-
ing mechanism is done using the following steps: 1) The end-user
sends its data to one or more edge nodes through the nodes’ in-
terface layer (this is done in the background). This interface is im-
plemented using a generic socket layer and so is independent of
the type of the applications. We assume that the application pro-
gram itself that is running on the node has already been deployed
to the nodes. In a real deployment, this decision depends on each
application’s area of interests such as the environment or location.
For example, in a city traffic monitoring, the program should only
be pushed to the nodes that are located in that city. We consider
this deployment issue to be orthogonal to our work. 2) The edge
node processes the data as an input to a task that is running on
a task slot, which is an abstraction of computational resources on
which a task can be deployed. So, the number of task slots of a par-
ticular node corresponds to the number of tasks that can be run
concurrently on the node. We use the number of CPUs as a metric
to determine the number of slots of a particular node. 3) Once the
processing is complete, the node sends the result back to the users.
Inactive tasks that are deployed on the node can be terminated us-
ing a least-recently-used policy.

Node Monitoring. To monitor the availability of each node, the
Node Manager periodically sends a heartbeat message to every
node. Each node includes some additional information to its heart-
beat response: 1) The node’s location, which can also be estimated
using a geo-location service, 2) The number of available task slots,
and 3) The current load information of every task that is currently
running on the node. The location information of a node is used
to determine which node an end-user should be associated with
to minimize the connectivity overhead between them (will be dis-
cussed later Section 5). The location information is also used as a

3 An application developer is not part of the runtime entities. Its only task is to de-
ploy an application to the system (e.g., traffic monitor organization, social network
analyzer, etc.).

UCC 17, December 5-8, 2017, Austin, TX, USA

JOB MANAGER |

Location-based Index

NODE - A

p Neighbor List
/
O e E e e Y
i
]
e ' !
L ' [

!
© ® A cioss | T,= 100ms

, Neighbor | Latency | # Available | Other Info
, Node (ms) Slots (Load, etc.)
e

_- B
©) xxxx | % 1

D
@ xxvy| % °

Figure 2: Neighbor Index Structure

metric to determine the neighborhood information that is used for
locality-aware load sharing (will be discussed in Section 6). The
number of available task slots and the load factor are used to de-
termine the resource availability of the nodes and its current load
respectively. The Node Manager periodically gathers all of this in-
formation and forward it to the Job Manager which will use this
information for task management and scheduling.

Locating an Edge Node. When an end-user tries to discover an
edge node for offloading her computation, she will need to query
the availability of the nodes in the system. When the Job Manager
receives this query, it will return a set of possible edge nodes where
the user can connect to. Once the user receives this response, she
can connect to any of the nodes without going to the Job Man-
ager again and any subsequent requests can be directly sent to the
nodes. The decision on whichnodes the Job Manager should return
will be discussed in Section 5.

4 LOCALITY-AWARENESS

Having discussed the system model, we will now define the locality-
awareness property that we have implemented in our system. This
locality-awareness is used to intelligently associate end-users to
one of the edge nodes in the system (Section 5) and to handle run-
time dynamics through load sharing (Section 6).

4.1 Node Neighborhood

The Job Manager periodically gets an update about the nodes’ avail-
ability along with their resource information from the Node Man-
ager. It stores this information in a global location-based index
structure (shown in Figure 2). The main purpose of this index struc-
ture is to quickly find and map a node to one of the index’s cells
based on the node’s location. This index is also used to cluster
nodes based on their locations to determine the neighborhood of
nodes. Nodes that are located close to each other will be mapped
to the same index cell. Nodes that lie within the same index cell
or in adjacent cells to a node will be considered as its neighbors,
since intuitively they are close to each other.

Although an actual geographic distance between two end-points
may not guarantee a low latency between them in a wide-area set-
ting, large values of geographic distance between two end-points
have a strong tendency of having circuitous routing as studied by

UCC 17, December 5-8, 2017, Austin, TX, USA

previous works [28, 32]. Furthermore, a node’s IP-address can be
used to estimate its location in the network and the linearized dis-
tances between two end-points have been shown to have a strong
correlation to end-to-end delay.

The size of the index cell also determines the size of the neigh-
borhood and it should be configurable depending on how close a
node should be considered a neighbor. If the size of the cell was
set too big, e.g., 1000x1000km?, this would not give a meaningful
filtering result since nodes that are very far from each other would
still be considered as neighbors. On the other extreme, limiting the
size of each cell too small, e.g., 100x100m? would filter too many
nodes that in reality have low inter-node latency. We evaluate the
effect of the cell size later in the experimental section. The location-
based index can also be implemented using a different index struc-
ture that provides a more sophisticated partitioning scheme that
partition the location in a gradual manner such as an R-tree.

4.2 Neighbor-Aware Edge Nodes

The neighboring information that is maintained by the Job Man-
ager is shared to all the nodes. Thus, each node in the system is
aware of the availability of its neighbors. Whenever a node joins
(leaves) the system, the Job Manager will add (remove) the node in-
formation from its index structure and propagate this update to all
nodes within the neighborhood. When an edge node initially joins
the system, it will use the neighboring information and measure
the estimated network latency to each of its neighbors. Once the
node gets the estimated latency to its neighbors, the node will use
this information to further filter and classify its neighbors by con-
structing a hierarchical data structure. This hierarchical data struc-
ture defines the priority of the neighbors (shown in Figure 2). Each
level i in the hierarchy consists of all neighbor nodes whose latency
to the node, L, is within a latency threshold: (i — 1)T < L < iT
where i > 1and i = 1 is the top most level. This latency thresh-
old T is set as a system parameter depending on the sensitivity
required to the latency. For example, a neighbor node will be clas-
sified as a top-class neighbor if the latency between them is less
than T = 100ms. On the other hand a neighbor node that has signif-
icantly high latency L > 500ms can be ignored even if it is located
in an adjacent cell.

This neighboring hierarchy is constructed and maintained by
each node, meaning that any particular node may be classified to
different levels by different nodes. For example, a node A may be
classified as a top-level neighbor by node B since they are close to
each other, but is considered as a third-level neighbor by node C
since they are far away from each other. Nodes within the same
class can be considered to have similar latency. The main reason
of classifying nodes into different classes rather than simply sort-
ing the nodes based on their latency is that it is less susceptible to
latency variance. Thus, every node in the system is aware of the
availability of its neighboring nodes and the latency to its neigh-
bors.

To maintain an accurate and up-to-date latency between nodes,
a node will have to frequently monitor the latency to all of its
neighbors and update any of the latency information that has a
large change. Although this fine grained monitoring will result in
ahigh accuracy, in a large-scale environment, this may incur a high

Albert Jonathan, Abhishek Chandra, and Jon Weissman

monitoring overhead. Furthermore, if the nodes in the system are
relatively static (regardless of the mobility of the end users), the
network latency between nodes should be relatively stable. We rely
on an estimation to determine the latency between nodes. Initially,
each node will try to get an estimate of the network latency to each
of its neighbors by sending multiple sizes of data to get an estimate
latency for each data size. We assume that each individual data
that is sent between nodes can be mapped to the latency predic-
tion mapping. We believe this assumption is reasonable since each
individual offloading request/data for most mobile applications is
typically small (e.g., image update, sensor reading, etc.) [3, 13, 15]
and thus its latency can be predicted within a small error margin.
Although the size of each individual update is small, the challenge
comes from the rate which may constrain the network availability
of each node.

The location-based index that is maintained by the Job Manager
determines the initial range of neighboring nodes that need to be
monitored by each node. This may have a drawback of having false
positive and false negative nodes during the pruning step which
correspond to ignoring nodes that are located outside the neigh-
boring bounding box with low inter-node latency and including
nodes within the bounding box that have high inter-node latency
respectively. However, this early pruning gives the benefit of re-
moving the majority of high latency nodes which is highly benefi-
cial in a real Mobile-Edge Computing environment consisting of a
large scale of edge nodes.

Our Edge Cloud design pushes most of the decision making to
the edges rather than relying on the global decision made by the
Job Manager. This is made possible since each edge node itself
has a complete knowledge of its neighbors. For example, in the
case of workload burst, an edge node may determine which of its
neighbors can be used to share its workload based on the latency
information between them which can be used as a projection of
latency that determines the computational hand-off overhead. Al-
though the localized decision may be sub-optimal compared to a
global decision, it gives us the benefit of allowing decisions to be
made quicker and preventing potential bottlenecks in the central-
ized server.

5 EDGE NODE DISCOVERY

In this section, we discuss the node discovery mechanism to find
any edge nodes that are located close to end-users. Most Mobile-
Edge Computing applications rely on discovering nodes within the
end-user’s network coverage area. This means that an end-user
can only discover edge nodes that are within the user’s area or
within the same network range (connected by local area network
or within access points that are only a few hops away). This is
a common approach for discovering nearby nodes especially for
most sensor/IoT devices that use a broadcast discovery mechanism
to find nearby edge nodes. Although this mechanism guarantees
that the nodes that are found have little overhead to the users, this
mechanism greatly limits the range of possible edge nodes that
the users can utilize, leading to several disadvantages. First, when
there are no available nodes within a close network range, nodes
that are a few hops away with available resources may not be dis-
covered at all, and hence the users are unable to utilize the nodes.

Locality-Aware Load Sharing in Mobile Cloud Computing

Second, an edge node that is within the discovery range may have
a high processing load or high network I/O loads (e.g., due to a
hotspot). Thus, offloading to an already-overloaded node may even
degrade the overall performance to the users. Hence, a user should
be exposed to more node selection options.

Our edge node discovery mechanism relies on the global node
availability provided by the Job Manager. It allows end-users to
find a wide range of edge nodes even if there are no available nodes
within the users’ network range. Note that our technique does not
eliminate the node discovery mechanism that allow end-users to
find nodes that are located within a close network range. Instead, it
can be used as an additional mechanism if the previous mechanism
could not find any nearby edge nodes. The Job Manager uses user’s
location information to find any nodes that are located close to her
by using the location-based index discussed in the previous section.
Although the list of nodes that are returned by the Job Manager
may include some nodes that do not have very low latency to the
user, the list guarantees the closest available nodes in the system.

Once a user has been associated with a specific node, the node
will share its neighboring node information to the user. This mech-
anism is used to handle potential failures of the associated node.
When the associated node fails, its users can quickly find other
nearby nodes from the node’s neighboring list. In this case, the la-
tency to a neighboring node is used as a projection to the latency
between the user to the neighbor node. This results in a short dis-
tance from the neighbor node to the user since the distance be-
tween the failed node and its neighbors is small. If there was no
available node in the neighboring list, the user would have to query
the Job Manager again following the same steps as for initial node
discovery mechanism.

6 LOCALITY-AWARE LOAD SHARING

As the number of resource-limited devices that are connected to
the Internet increases rapidly along with the number of compute-
intensive applications running on these devices, more and more
applications would rely on Cloud’s support for processing their
data. This may cause a dynamic and skewed workload distribu-
tion which results in a particular set of edge nodes being heavily
used and potentially becoming a bottleneck while leaving other
nodes idle. If the system is unable to detect such a behavior, the
use of the Edge Cloud for computational offloading may worsen
the overall performance compared to leaving the computation on
the devices themselves even with some of them have limited com-
puting power. Although edge nodes have relatively more powerful
computational capability compared to most mobile/sensor devices,
these nodes typically have much more limited resources (e.g., CPU
power, memory capacity, etc.) and network bandwidth compared
to Data Center’s nodes. So, these nodes are more prone to becom-
ing overloaded compared to nodes in a centralized Cloud. Without
the capability of sharing or balancing their workload, the use of
edge nodes can potentially hurt the application desired goals. Thus,
there is a need for Edge Cloud systems to handle such workload
dynamics to maintain the low end-to-end latency requirement of
mobile applications.
A common technique to handle workload dynamics in distributed

systems is to dynamically share some of the workload to other

UCC 17, December 5-8, 2017, Austin, TX, USA

OVERLOADED NODE

EDGE NODE - A EDGE NODE - B

| Neighbors: [B, ...] J ’ Neighbors: [A, ...] J

Task Migration

r 1 A—B En
b -] 1]
'
A
S Interface |
| \ Interfaw\ 4\ |/

\ ~
& \ N N User Redirection
A—B

- - - -—_
-

~ -

S @ @
Ch S

~
~o _-" S~

~
~
~
N
1
’
7’
-

Figure 3: Load Sharing Mechanism

nodes that are relatively idle. The load sharing in the context of
Mobile-Edge Computing (MEC) can be performed in two steps: 1)
By handing-off some of the tasks to other nodes that are lightly
loaded, and 2) By redirecting some of the end-users to other nodes
if the high load is caused by a large volume of end-users connecting
to a hotspot node [11, 14, 34, 37]. The latter case may require a task
to be handed-off first from the overloaded node to the new nodes
before redirecting its users to the new nodes (shown in Figure ??).
The mechanism for seamlessly migrating a task from one node to
another has been intensively studied in the context of handling
user’s mobility in MEC environment [12, 14, 34]. Similar mech-
anism can be used to handle task migration. However, the load
sharing problem is still left with the question on when to share the
workload and which nodes the workload should be shared with.

One possible metric to determine whether a node is overloaded
is by monitoring if there is a slowdown of any of its tasks. This met-
ric, however, only detects whether a node is overloaded and cannot
be used to determine whether the node should share its workload
since the latter requires a knowledge of the load information of
other nodes as well. The problem of load sharing in MEC becomes
more challenging since the edge nodes are highly distributed and
may be connected by heterogeneous WAN with limited network
bandwidth, unlike the intra-Data Center network. So, the system
should carefully consider which nodes (if any) the workload should
be shared with. A poor decision in selecting nodes for load sharing
may worsen the overall performance to the end-users. For example,
it may not be desirable to offload a task to another node that has
already been heavily loaded or had its network congested, or to a
node that incur too much network latency because it is far away
from the user. This may result in an increase in the overall end-to-
end latency caused by resource contention as in the former case,
and high task migration or latency overhead in the latter case.

We propose a locality-aware load sharing technique with the
goal of achieving applications latency goals in the case of dynamic
workload. We achieve this goal by selectively choosing nodes where
an overloaded node should share its workload with in order to pre-
vent the possible issues that are discussed above. Our technique
considers the nodes’ resource availability, their current load, as
well as the overhead of migrating the task and redirecting the users.
All of this information can be obtain from the neighboring infor-
mation that is maintained by each node.

UCC 17, December 5-8, 2017, Austin, TX, USA

Input :neighbor-list N = (Np, ...N), latency-goal Lgpp
Output:n e N
for index leveli : 0 — z do
if iT < Lgpp then
for n € N; do
if n not busy and has slot then
| return n;
end
end
else
| cannot find node, return;

end
end
Algorithm 1: Node Selection for Load Sharing

To determine whether a node needs to share its workload, we
rely on a per-application’s desired-latency goallLqpy . The goal of
the system is to keep the end-to-end latency below the applica-
tion’s goal. To achieve this, each node needs to monitor the end-
to-end latency information of each of its tasks which includes the
time needed to process the offloaded data as well as the time taken
to send the data between the user and the node. Each node peri-
odically monitors the average latency L of a given task within the
last time window t (e.g., t = 30seconds).If L < Lapp. the node does
not need to share its workload. Otherwise, the node will start to lo-
cate one of its neighbors to share its workload with. To determine
which node to share the workload with, it traverses its neighbor-
ing hierarchy starting from the top level as shown in Algorithm 1
and finds any nodes that have an available task slot and are not
overloaded. Neighbor nodes that are located within the same level
will be considered to have similar latency to the node and thus the
node may rely on other factors such as their computation power,
current loads, etc.

Whenever a node decides to share its workload, we limit the
number of additional neighbor node to share by 1 every t. If L >
Lapp even after the node has shared its workload, the node will
locate an additional neighboring node to further reduce its work-
load. Thus, the amount of sharing increases gradually every ¢. The
value of ¢ itself provides a trade-off between the responsiveness to
workload change and the waste of computation resources respec-
tively. We implement such policy to prevent a node from hoard-
ing its neighbors’ resources in a short time period, resulting in
an exhaustion of resources for other tasks and unpredictability of
loads. Gradually acquiring resources will also prevent interference
of already running tasks on the neighboring node due to a sudden
increase in the number of additional shared tasks. This approach
also performs well in practice since workload changes usually in-
crease/decrease in a gradual manner within a few seconds.

Once a neighboring node is selected, the node needs to deter-
mine the amount of workload that should be shared with its neigh-
bor based on the workload characteristic over the last ¢ window.
To determine this, the node will find the ratio of its workload to
share to its neighbors by solving the following equation:

Min(Max((rserf * L), ..., (ri * Li))), where Z r=1 1)

Albert Jonathan, Abhishek Chandra, and Jon Weissman

150

£ prEs
£ -

. g 100 .‘&D .

a ® s

Q]
x
% 50 % Node —&—

0 : b4 o Mobile —x—
0 100 200 300 400 500 0 100 200 300

Inter-Node Latency (ms) Distance (km)

(b) Correlation between mobile nodes
and mobile phone networks.

(a) Inter-node latency.

Figure 4: Edge Node Deployment

where 7. and r; are the ratios of the workload to be run on the
original node and neighbor node i respectively. L and L; are the
estimated latency of accessing the original node and the neighbor-
ing node which is obtained from the neighboring information. We
estimate the latency between end-user to the neighboring node us-
ing a projection of the inter-node latency. The Max property in the
function is used since the completion time is typically determined
by the completion time of processing the last record. The optimiza-
tion problem is then to minimize the overall time.

These load sharing ratios for each node will be used for work-
load in the next ¢ interval. If L falls below AL 4y, the node will grad-
ually reduce the number of neighbors it used to share the workload
with. The reason of adding a A factor is to prevent a fluctuation in
latency. For example, if we set A = 1 and L = 290ms < Lgpp =
300ms after the node shares 40% of its workload to another node
and decides that it will stop sharing the workload since L < Lgpp,
this may increases L again in the next t window. In this case, the
latency of the application will fluctuate for every ¢ interval. We set
A = 0.8 in our deployment since it works well with the dynamism
of the workload we consider.

7 EXPERIMENTAL EVALUATION

7.1 Experimental Setup and Methodology

Edge Cloud System Setup. We evaluated our Edge Cloud sys-
tem using 20 physical PlanetLab [7] nodes (with up to 3 virtual
nodes in each location) that are geographically distributed across
the US. (ranging from U.S. West to U.S. East). We did not consider
nodes that are located in the same physical machine as neighbors
to each other since doing so will completely eliminate the latency
to the neighboring nodes which is unrealistic in a real deployment.
Both the Job Manager and the Node Manager were deployed on a
reliable centralized server located in Minnesota. This centralized
server did not participate in any task processing and it was not a
bottleneck in our deployment since its only purpose was for node
monitoring and task scheduling. Figure 4(a) shows the inter-node
latency in our deployment. We can see that sending data to a dis-
tant node may incur up to 40X higher latency compared to sending
the data to a nearby node. This shows the importance of node se-
lection policy for workload sharing.

We simulated the end-users using a daemon program running
on 10 different PlanetLab nodes and 10 other PlanetLab nodes as
the workload generator where some of them are actually the same

Locality-Aware Load Sharing in Mobile Cloud Computing

1 ol I e o R -
0.8

0.6
4

*™ No Sharing e~
Neighbor-Sharing —&—
Random-Sharing - -3 -

Centralized —x—-

1000 1200

CDF

0.4

0.2

400
End-to-End Latency (ms)

600 800

(a) End-to-end latency distribution during a workload dynamic.

End-to-End Latency (ms)

UCC 17, December 5-8, 2017, Austin, TX, USA

! No Sharing ---e-- Random-Sharing - -3 -
Neighbor-Sharing —=— Centralized —»—-
1200
900 % Koxux TH e e
[w0y O
. ,jl x B g 8 Aag \ XXy
600, ¥ / A ey ¥
M B Mg, *
B2 8¢ 0 eom p S0
,[3. S " H ee volg L
R oo S) W
s R
0 LI'l Time LI'Z

(b) Meeting latency goal during a workload dynamic.

Figure 5: Benefit of Locality-Aware Load Sharing

nodes. These nodes are not part of the edge nodes that are con-
tributing as compute nodes. We call these emulated users as mo-
bile nodes. We validated our methodology of simulating the mobile
users using mobile nodes (Figure 4(b)). We compared the latency
of accessing the edge nodes using mobile nodes with the latency of
accessing edge nodes using mobile phones with Wi-Fi and mobile
network (Node, Wi-H, and Mobile respectively). We see that they
have a strong correlation.

The location-based index of the Job Manager is implemented us-
ing a grid index with 144 cells (unless explicitly specified) which
partitions the geographic U.S. map into equal size of cells based on
the coordinates. Nodes that lie within the same cell or one of the
adjacent cells are considered as neighbors. For the neighboring list
that is maintained by each node, we set the threshold of each level
i to T; = i * 100ms with a maximum of 3 levels. Thus, neighboring
nodes that are > 300ms away will not be considered for workload
sharing. We also set the evaluation time window ¢ to 10 seconds.
So, each node will evaluate whether to share its workload based
on the workload characteristic in the past t = 10 seconds.

Workload Trace and Applications. We used a real three-day
Twitter sample trace as our workload that contains approximately
4 million tweets per day. This trace was obtained from December
2015 and it includes dynamic workload over time from real mobile
users. We sped up the tweet rate by 24X since the trace only shows
a fraction of the real Twitter workload. This is done to better see
the effect of overloaded nodes in a real deployment. The tweet data
sources are partitioned and deployed to the nodes based on each
tweet’s location coordinates. So, the skewness of workload and the
location of hotspots are naturally included in the workload.

We use a location-based top-k popular topic as our application
that is executed on the edge nodes. This application aggregates all
the tweets within a specific region and returns the top k words. The
data processing on the edge nodes itself incurs only a small frac-
tion of the end-to-end latency which is the time taken from the
time the end-user sends the data to the edge node to the time the
user obtains the result. We observe that the major fraction of the
end-to-end latency is incurred by the wide-area network latency
for offloading the data. This is reasonable for many Mobile-Cloud
applications since most of the task processing can typically be pro-
cessed with low processing time.

System Comparison. We compare our neighbor-aware load shar-
ing technique (Neighbor Sharing) with 1) The use of an Edge Cloud
that does not consider load sharing (No Sharing), 2) The use of an
Edge Cloud that use load sharing with random node selection to
determine which nodes a workload should be shared with (Ran-
dom Sharing), and 3) The use of a centralized Cloud (Centralized)
as our baselines. All of the Edge Cloud usages were deployed us-
ing the same node deployment while in the centralized case, we
deployed more nodes/resources in a single location to simulate a
higher computational power available in a centralized Cloud.

In the case of Random-sharing, an overloaded node would ran-
domly choose any available nodes ignoring the latency overhead
between them that is used as a projection to the end-user and the
current workload of the other nodes. On the other hand, the over-
loaded nodes in the Neighbor-sharing would only consider sharing
their workload to nodes that are located close to the overloaded
nodes and the nodes are only selected if they are not overloaded.
The nodes in the centralized Cloud itself are deployed using Plan-
etLab nodes. Furthermore, for the centralized result, we deployed
the Centralized server in different number of locations for each
iteration: U.S. West, U.S. Mid-West, and U.S. East.

7.2 Benefit of Locality-aware Load Sharing

In the following set of experiments we evaluate our locality-aware
load sharing technique in the case of dynamic workload. We set
the application’s latency goal Lapp to 300 ms and gradually scale
up/down the workload by up to 14X. Figure 5 shows the perfor-
mance impact caused by the workload dynamic. We make a few
observations from the result. First, we can see that the use of Edge
Cloud significantly outperforms the use of centralized Cloud in all
of the cases as shown in Figure 5(a) which shows the latency CDF
of all approaches. We also observe that the increase in workload did
not have significant slow down in the computation time performed
on the node itself. Rather, the latency incurred by the data offload-
ing to an edge node is the dominant factor due to the contention
of the limited wide-area network bandwidth. Thus, although the
centralized Cloud deployment has more processing power (lower
computation time), it still suffers from the high overhead between
the mobile nodes to the centralized nodes.

Secondly, we observe that the node selection decision for load
sharing is critical. We can see from Figure 5(a) that the Random-
sharing performs worse compared to the Neighbor-sharing. The

UCC 17, December 5-8, 2017, Austin, TX, USA

5 ~ No Sharing
3 600 Neighbor-Sharing ——
oy
T
® 400
=]
c
u
S 200
]
[
i}
0

2 4 6 8 10 12 14
Scale Factor (X)

Figure 6: Increase in Latency Over Scaled Workload

reason is that in the Random-sharing approach, an overloaded node
might select one of its neighbors that are far away to the users
or neighbors that have already had high load. Comparing the No-
sharing and the Random-sharing approaches, we can also see that
the latter performs better than the former approach below the 75th
percentile but has a longer tail later in the distribution. This shows
that randomly selecting nodes to share a workload may result in
selecting nodes with very high overhead and may suffer at a higher
percentile.

Thirdly, our neighbor-aware load sharing is able to maintain a
close gap to the application-specified latency goal that was set to
300 ms in this case. Figure 5(b) shows a snapshot of the trace dur-
ing a dynamic workload where the workload increased from Tj to
T, and decreased afterward. Before Tj, all Edge Cloud approaches
performed comparably. However, as the workload increased (T1 <
T < Ty), some of the edge nodes became overloaded and started
to result in a higher end-to-end latency. Approaches that consider
load sharing (Random-sharing and Neighbor-sharing) started to
look for other nodes for sharing their workload.

We can see that the Neighbor-sharing is able to maintain a close
gap to the application latency goal (within 20% increase in latency).
If there were no neighboring nodes that could provide low over-
head, the overloaded node would handle the tasks by itself. How-
ever, if there were any nearby nodes with low network latency
overhead, it would start sharing the workload to one of the neigh-
boring nodes. When the workload decreased at T and the end-
to-end latency dropped below the threshold, all policies that used
load sharing mechanism started to decrease the number of shares
and eventually stopped sharing their workload. These results show
that the use of Edge Cloud is not sufficient to satisfy application’s
latency goal especially in the case of dynamic workload.

We also observe the scalability of our locality-aware load shar-
ing approach by scaling up the load with different scale factors.
Figure 6 shows the impact to end-to-end latency due to an increase
in the workload. We can see that even with the Neighbor-sharing
approach, the latency may still increase beyond the end-to-end
latency-desired goal. The main reason to this is that some of the
edge nodes in our deployment did not have any neighbors where
they can share their workload with. Thus, they caused a slowdown
to the overall time. However, it increases in a much more graceful
way compared to the No-sharing approach. We also see that the
number of tasks that satisfied the latency goal is much higher than
the No-sharing approach.

Albert Jonathan, Abhishek Chandra, and Jon Weissman

7.3 Impact of Neighbor Distance

In this experiment we study the effect of setting the minimum dis-
tance between nodes which we call as neighbor distance as a pa-
rameter to determine whether a node should be considered as a
neighbor. At one extreme, the neighbor distance may cover the
entire area which make every node consider all other nodes as
its neighbors. In this case, nodes that are very far away may still
be selected for workload sharing since they are considered as its
neighbor. This is effectively similar to the random node selection
approach with an additional consideration of not selecting busy
nodes. At the other extreme, the index cell size may be limited to
have a very small coverage which makes a node only consider an-
other node as its neighbor if they are very close to each other.

Figure 7 shows the impact of varying the number of grid cells to
the end-to-end latency. The larger the number of the grid cells is,
the smaller the neighbor distance is and vise versa. We can see that
the performance improved as we increased the number of cells but
later decreased as the number of cells was set too high (number
of cells = 256). The reason behind the improvement in the early
increasing number of cells is because the neighboring list only in-
cluded nodes that were actually close to each other. However, as
we limited the cell size too small, more and more nodes were not
able to find any neighbors and hence were unable to share their
workload. This pattern will converge as the number of neighbor
nodes for each node reaches 0.

Figure 7(b) explains this phenomenon. With cell size equals to 1,
all of the nodes were considered as neighbors to every node even
if some of them are very far away (one in U.S. West and the other
one is in U.S. East). As the number of cells increases (the neighbor
distance/cell size decreases), less number of nodes were considered
as neighbors but these neighbor nodes were actually close to the
node itself.

7.4 Handling Node Failure

In this experiment we show the benefit of neighbor-awareness in
the case where the node that has been associated with an end-user
fails. When the node fails, the end-user can quickly re-associate
herself to one of the node’s neighbors without requesting for a new
node from the centralized server. This mechanism is made possible
since this neighbor node information is shared to the user.

In this experiment, we did not add any other variations to the
workload. Figure 8 shows the impact of adding failure to nodes in
our system. We randomly terminated any of edge nodes that were
supporting any end-users starting from time T;. We can see that
by having a knowledge of the availability of the alternative nodes,
the end-user can quickly re-associate herself to one of the failed
node’s neighbors. There is a small increase in the latency due to
the timeout mechanism that was used to detect node failure and
re-association time to the new node. On the other hand, if there
was no information of the availability of the neighboring nodes,
the end-user would have to connect to the centralized server. In ei-
ther case, when the failed node returns at time T5, the user could be
redirected back to the recovered node or kept being supported by
the covering node depending on whether the current end-to-end
latency met the application-desired latency goal. If the latency has
already met the latency goal, there is no reason for re-associating

Locality-Aware Load Sharing in Mobile Cloud Computing

UCC 17, December 5-8, 2017, Austin, TX, USA

24 Neighbor=0
20 Neighbor=1 s

Neighbor=2
Neighbor>=3

Number of nodes

1 16 64 144 256
Number of cells

(b) Neighboring node distribution over different cell sizes

Figure 7: Effect of Different Cell Sizes to the Performance

2 95th Percentile m—
é 1000 Average 1
3 800
g
_ 600
-
4 400
e
© 200
f=
L
0
! 10 64 144 256
Number of cells
(a) Effect of different cell sizes to the overall end-to-end latency.

2 No Neighbor —e— :

£ 800 Neighbor-Sharing —&— :

> Centralized ---x-- :

8‘ 1

o}

®

|

o

o

o]

-

c

L

Figure 8: Maintaining Low Latency During Node Failure

back to the recovered node. We also plot the latency of the cen-
tralized Cloud to show that the use of Edge Cloud still outperform
the centralized Cloud even in the case of node failure. This shows
that using an Edge Cloud platform is more suitable for the Mobile-
Cloud Computing applications that we consider compared to the
use of centralized Cloud even if the Edge Cloud is more susceptible
to failures.

8 RELATED WORK

There are a number of projects that have looked at the opportu-
nity of utilizing Cloud resources to support mobile/sensor devices.
Most of them focus on the oportunity of reducing the processing
time or saving energy consumption or both. [2, 8, 16, 27, 31, 40].
Others [13, 17, 20, 41] have also looked at mobile data manage-
ment and utilizing Cloud’s storage services for managing mobile
users’ data by using Cloud’s resources as caches or consistency
management. Although many of these works are relevant, most
of these systems do not consider the runtime dynamics which are
common in Mobile-Edge Computing environment. Our work is dif-
ferent from most of the existing works in that we focus on handling
runtime dynamics where some of the edge nodes may become a
bottleneck due to changes in workload. Furthermore, we study the
problem of selecting which nodes should be selected for load shar-
ing and how much of the workload should be shared if a node de-
cides to share its workload. Existing mechanism for computational
offloading and policies that determine which parts of the compu-
tation should be offloaded can be applied to our work.

Load balancing is a common technique that has been exten-
sively studied in the area of distributed systems, Cloud Computing,

network routing, and peer-to-peer systems [5, 23, 29, 38]. Most of
the existing techniques rely on the tasks scheduling decision that
determines where to schedule new tasks on the system to balance
the workload. Our work, however, is different from them in that
we focus on the Mobile-Edge Computing environment where the
nodes are interconnected by wide-area network. In our context,
the load sharing is done using a user redirection and task migra-
tion rather than tasks scheduling. Furthermore, our main goal is
not to get a balance workload in the system. Instead, we try to
achieve each application’s desired latency goals during workload
dynamics.

9 CONCLUSION AND FUTURE WORK

In this paper, we study the problem of load sharing to handle run-
time dynamics in a Mobile-Edge Computing (MEC) environment.
Our motivation is based on the dynamic property of the workload
in MEC along with the low latency requirement for many of to-
day’s mobile/IoT applications. The Edge Cloud platform that has
been proposed to provide computational offloading support for mo-
bile applications faces additional challenges in handling workload
dynamics since the nodes in Edge Clouds are typically connected
by WAN with high network latency and limited bandwidth. We
propose a locality-aware load sharing technique that allows edge
nodes to share their workload to other nodes to meet the low la-
tency requirement of the mobile applications in the case of work-
load increases. Our load sharing technique allows nodes to 1) In-
telligently determines whether to share their workload to other
nodes, 2) Selectively chooses which nodes the workload should be
shared with, and 3) Determines how much of the workload should
be shared. Our experimental results based on a real Twitter’s trace
show that our locality-aware load sharing technique is able to keep
the overall latency of mobile applications close to the applications’
desired goals as well as better utilize resources even in the case of
dynamic workload.

In the future, we would like to consider the overhead of task
migration between nodes in addition to the data transfer overhead
and incorporate the cost to the load sharing decision. Furthermore,
we would also like to consider different classes of mobile applica-
tions whose execution time itself may be the dominant part of the
computational offloading overhead. In this case, the system should
consider this variety of applications and may make the load shar-
ing decision differently. Lastly, we would also like to integrate the

UCC 17, December 5-8, 2017, Austin, TX, USA

energy consumption consideration on the mobile devices and al-
lows the device itself to intelligently determine whether to use a
Cloud’s resources during a high workload condition.

10 ACKNOWLEDGMENT

The authors would like to acknowledge grant NSF CSR-1162405
and CNS-1619254 that supported this research.

REFERENCES

[1] Suman Banerjee and Dapeng Oliver Wu. 2013. Final report from the NSF Work-

[2

(3

[4

8

[9

[10

[11

[12

[13

[14

[15

[16

[17

[18

[19

[20

[21

]
]

=

=

]
]

]

]

]

]

]

]

shop on Future Directions in Wireless Networking. (2013).

Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. 2013. To of-
fload or not to offload? the bandwidth and energy costs of mobile cloud comput-
ing. In INFOCOM, 2013 Proceedings IEEE. IEEE, 1285-1293.

David Barrett. 2013. One surveillance camera for every 11 people in Britain, says
CCTV survey. The Telegraph 10 (2013).

Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. 2012. Fog
computing and its role in the internet of things. In Proceedings of the first edition
of the MCC workshop on Mobile cloud computing. ACM, 13-16.

Valeria Cardellini, Michele Colajanni, and Philip S Yu. 1999. Dynamic load bal-
ancing on web-server systems. IEEE Internet computing 3, 3 (1999), 28-39.
Kyungmin Lee David Chu, Eduardo Cuervo, Johannes Kopf, Sergey Grizan, Alec
Wolman, and Jason Flinn. [n. d.]. Outatime: Using Speculation to Enable Low-
Latency Continuous Interaction for Cloud Gaming. ([n. d.]).

Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson, Mike
Wawrzoniak, and Mic Bowman. 2003. Planetlab: an overlay testbed for broad-
coverage services. ACM SIGCOMM Computer Communication Review 33, 3
(2003), 3-12.

Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. 2010. MAUI: making smartphones
last longer with code offload. In Proceedings of the 8th international conference
on Mobile systems, applications, and services. ACM, 49-62.

Stephen R Ellis, Katerina Mania, Bernard D Adelstein, and Michael I Hill. 2004.
Generalizeability of latency detection in a variety of virtual environments. In
Proceedings of the Human Factors and Ergonomics Society Annual Meeting, Vol. 48.
SAGE Publications Sage CA: Los Angeles, CA, 2632-2636.

Dave Evans. 2011. The internet of things: How the next evolution of the internet
is changing everything. CISCO white paper 1 (2011), 1-11.

Chaima Ghribi, Makhlouf Hadji, and Djamal Zeghlache. 2013. Energy efficient
vm scheduling for cloud data centers: Exact allocation and migration algorithms.
In Cluster, Cloud and Grid Computing (CCGrid), 2013 13th IEEE/ACM Interna-
tional Symposium on. IEEE, 671-678.

Mark S Gordon, Davoud Anoushe Jamshidi, Scott A Mahlke, Zhuoqing Morley
Mao, and Xu Chen. 2012. COMET: Code Offload by Migrating Execution Trans-
parently.. In OSDI, Vol. 12. 93-106.

Trinabh Gupta, Rayman Preet Singh, Amar Phanishayee, Jaeyeon Jung, and
Ratul Mahajan. 2014. Bolt: Data Management for Connected Homes.. In NSDL
243-256.

Kiryong Ha, Yoshihisa Abe, Zhuo Chen, Wenlu Hu, Brandon Amos, Padman-
abhan Pillai, and Mahadev Satyanarayanan. 2015. Adaptive v handoff across
cloudlets. Technical Report. Technical Report CMU-CS-15-113, CMU School of
Computer Science.

Kiryong Ha, Zhuo Chen, Wenlu Hu, Wolfgang Richter, Padmanabhan Pillai, and
Mahadev Satyanarayanan. 2014. Towards wearable cognitive assistance. In Pro-
ceedings of the 12th annual international conference on Mobile systems, applica-
tions, and services. ACM, 68—81.

Karim Habak, Mostafa Ammar, Khaled A Harras, and Ellen Zegura. 2015. Femto
clouds: Leveraging mobile devices to provide cloud service at the edge. In Cloud
Computing (CLOUD), 2015 IEEE 8th International Conference on. IEEE, 9-16.
Wassim Itani, Ayman Kayssi, and Ali Chehab. 2010. Energy-efficient incremen-
tal integrity for securing storage in mobile cloud computing. In Energy Aware
Computing (ICEAC), 2010 International Conference on. IEEE, 1-2.

Albert Jonathan, Mathew Ryden, Kwangsung Oh, Abhishek Chandra, and Jon
Weissman. 2017. Nebula: Distributed Edge Cloud for Data Intensive Computing.
IEEE Transactions on Parallel and Distributed Systems (2017).

Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan. 2011. Cloud4Home-
Enhancing Data Services with@ Home Clouds. In Distributed Computing Sys-
tems (ICDCS), 2011 31st International Conference on. IEEE, 539-548.

Johannes Kolb, William Myott, Thao Nguyen, Aniruddha Chandra, and Jon
Weissman. 2014. Exploiting User Interest in Data-Driven Cloud-Based Mobile
Optimization. In Mobile Cloud Computing, Services, and Engineering (Mobile-
Cloud), 2014 2nd IEEE International Conference on. IEEE, 228-235.

Kyungmin Lee, David Chu, Eduardo Cuervo, Johannes Kopf, Alec Wolman, Yury
Degtyarev, Sergey Grizan, and Jason Flinn. 2015. Outatime: Using speculation to

[22

[23

[24

[25

[26

[27

[28

[29

[30

[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41

[42

[43

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Albert Jonathan, Abhishek Chandra, and Jon Weissman

enable low-latency continuous interaction for mobile cloud gaming. GetMobile:
Mobile Computing and Communications 19, 3 (2015), 14-17.

Min-Joong Lee and Chin-Wan Chung. 2011. A user similarity calculation based
on the location for social network services. In Database Systems for Advanced
Applications. Springer, 38-52.

Lei Lei, Zhangdui Zhong, Kan Zheng, Jiadi Chen, and Hanlin Meng. 2013. Chal-
lenges on wireless heterogeneous networks for mobile cloud computing. IEEE
Wireless Communications 20, 3 (2013), 34-44.

Dawei Li, Theodoros Salonidis, Nirmit V Desai, and Mooi Choo Chuah. 2016.
DeepCham: Collaborative Edge-Mediated Adaptive Deep Learning for Mobile
Object Recognition. In Edge Computing (SEC), IEEE/ACM Symposium on. IEEE,
64-76.

Christian Licoppe and Yoriko Inada. 2006. Emergent uses of a multiplayer
location-aware mobile game: The interactional consequences of mediated en-
counters. Mobilities 1, 1 (2006), 39-61.

Peng Liu, Dale Willis, and Suman Banerjee. 2016. ParaDrop: Enabling Light-
weight Multi-tenancy at the NetworkdAZs Extreme Edge. In Edge Computing
(SEC), IEEE/ACM Symposium on. IEEE, 1-13.

Emiliano Miluzzo, Ramén Céceres, and Yih-Farn Chen. 2012. Vision: mClouds-
computing on clouds of mobile devices. In Proceedings of the third ACM workshop
on Mobile cloud computing and services. ACM, 9-14.

Venkata N Padmanabhan and Lakshminarayanan Subramanian. 2001. An inves-
tigation of geographic mapping techniques for Internet hosts. In ACM SIGCOMM
Computer Communication Review, Vol. 31. ACM, 173-185.

Ananth Rao, Karthik Lakshminarayanan, Sonesh Surana, Richard Karp, and Ion
Stoica. 2003. Load balancing in structured P2P systems. Peer-to-Peer Systems I
(2003), 68-79.

Mahadev Satyanarayanan. 1996. Fundamental challenges in mobile computing.
In Proceedings of the fifteenth annual ACM symposium on Principles of distributed
computing. ACM, 1-7.

Mahadev Satyanarayanan, Paramvir Bahl, Ramoén Caceres, and Nigel Davies.
2009. The case for vm-based cloudlets in mobile computing. Pervasive Com-
puting, IEEE 8, 4 (2009), 14-23.

Lakshminarayanan Subramanian, Venkata N Padmanabhan, and Randy H Katz.
2002. Geographic Properties of Internet Routing.. In USENIX Annual Technical
Conference, General Track. 243-259.

Pratap Tokekar, Deepak Bhadauria, Andrew Studenski, and Volkan Isler. 2010. A
robotic system for monitoring carp in Minnesota lakes. Journal of Field Robotics
27, 6 (2010), 779-789.

Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees De Laat,
Joe Mambretti, Inder Monga, Bas Van Oudenaarde, Satish Raghunath, and
Phil Yonghui Wang. 2006. Seamless live migration of virtual machines over the
MAN/WAN. Future Generation Computer Systems 22, 8 (2006), 901-907.

Luis M Vaquero and Luis Rodero-Merino. 2014. Finding your way in the fog: To-
wards a comprehensive definition of fog computing. ACM SIGCOMM Computer
Communication Review 44, 5 (2014), 27-32.

George Vellidis, Michael Tucker, Calvin Perry, Craig Kvien, and C Bednarz. 2008.
A real-time wireless smart sensor array for scheduling irrigation. Computers and
electronics in agriculture 61, 1 (2008), 44-50.

Shigiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and
Kin K Leung. 2015. Dynamic service migration in mobile edge-clouds. In IFIP
Networking Conference (IFIP Networking), 2015. IEEE, 1-9.

Xianglin Wei, Jianhua Fan, Ziyi Lu, and Ke Ding. 2013. Application scheduling
in mobile cloud computing with load balancing. Journal of Applied Mathematics
2013 (2013).

W Wen. 2008. A dynamic and automatic traffic light control expert system for
solving the road congestion problem. Expert Systems with Applications 34, 4
(2008), 2370-2381.

Ben Zhang, Nitesh Mor, John Kolb, Douglas S Chan, Ken Lutz, Eric Allman, John
Wawrzynek, Edward Lee, and John Kubiatowicz. 2015. The cloud is not enough:
saving iot from the cloud. In 7th USENIX Workshop on Hot Topics in Cloud Com-
puting (HotCloud 15).

Irene Zhang, Niel Lebeck, Pedro Fonseca, Brandon Holt, Raymond Cheng, Ari-
adna Norberg, Arvind Krishnamurthy, and Henry M Levy. 2016. Diamond: Au-
tomating Data Management and Storage for Wide-Area, Reactive Applications..
In OSDI. 723-738.

Tan Zhang, Aakanksha Chowdhery, Paramvir Victor Bahl, Kyle Jamieson, and
Suman Banerjee. 2015. The design and implementation of a wireless video
surveillance system. In Proceedings of the 21st Annual International Conference
on Mobile Computing and Networking. ACM, 426-438.

Jiang Zhu, Douglas S Chan, Mythili Suryanarayana Prabhu, Prem Natarajan,
Hao Hu, and Flavio Bonomi. 2013. Improving web sites performance using edge
servers in fog computing architecture. In Service Oriented System Engineering
(SOSE), 2013 IEEE 7th International Symposium on. IEEE, 320-323.

	Abstract
	1 introduction
	2 Background
	3 Edge Cloud Model & Implementation
	3.1 System Components
	3.2 Implementation

	4 Locality-Awareness
	4.1 Node Neighborhood
	4.2 Neighbor-Aware Edge Nodes

	5 Edge Node Discovery
	6 Locality-Aware Load Sharing
	7 Experimental Evaluation
	7.1 Experimental Setup and Methodology
	7.2 Benefit of Locality-aware Load Sharing
	7.3 Impact of Neighbor Distance
	7.4 Handling Node Failure

	8 Related Work
	9 Conclusion and Future Work
	10 Acknowledgment
	References

