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Abstract—Centralized cloud platforms have been widely uti-
lized for data-intensive computing in many domains. However,
such systems are not suitable for geo-distributed applications
since they require data to be moved to a central location for
processing. Recent works have proposed an alternative cloud
platform, called edge cloud that provides computational and/or
storage resources at the edge, enabling in-situ data processing and
low latency. Although such a dispersed cloud model offers low
latency, it comes with reliability trade-offs. First, edge resources
are interconnected using a wide-area network which is less
reliable compared to an intra-cluster network. Second, resources
in the edge cloud are typically highly heterogeneous leading to
performance variability. Third, edge resources may span different
organizational domains, containing different participation rules,
leading to greater unreliability. In this paper, we discuss the issues
of reliable computation and data storage availability in a geo-
distributed edge cloud system built using commodity resources.
We introduce a notion of reliability factor which defines how
reliable a node is. Using this reliability factor, we schedule tasks
to a set of nodes to meet a certain reliability goal and dynamically
replicate data to achieve timeliness for computation and high
data availability for data storage respectively. We evaluate our
techniques on the Nebula edge cloud and find that the use
of reliability factor results in better performance and storage
utilization.

I. INTRODUCTION

Centralized cloud systems [1], [2] are the de-facto platform

for executing large-scale data analysis in many domains.

The convenience of cloud systems is attractive - a user can

simply request resources (e.g. storage space or machines)

as needed. No physical hardware needs to be managed, and

typically minimal software setup is required. Yet, due to the

centralized nature of cloud systems, data must be brought into

a central location for processing which is inappropriate for

many data analytic applications whose data itself is produced

in a distributed fashion around the world. For example, content

distribution networks (CDN) and large web services produce

logs in a large number of sites distributed over the globe which

must then be processed for anomaly detection, billing users,

or for other kinds of analysis.

Most large-scale data analytic applications produce output

results that have substantially reduced volume compared to

the size of the input data, typically through aggregation or

filtering. For example, most video feeds contain uninterest-

ing data and only anomalies need to be analyzed. For this

reason, processing data closer to the input source can reduce

data transfer overhead, and therefore increase overall system

performance.

Edge cloud [3]–[7] offers a wide distribution of storage/-

compute resources around geographic locations. It can provide

in-situ data processing for geo-distributed data analysis and

low latency to the data sources. However, such systems face

additional challenges: 1) the links between computational

resources are typically over a wide-area network (WAN), 2)

the types of machines involved may vary greatly from one

another since they can be provided and maintained by different

administrators unlike the centralized cloud’s machines, and 3)

edge failures occur with high likelihood [8], [9]. Thus, there

is a need to guarantee a certain level of reliability for such

systems. The use of an edge cloud for data storage can provide

low latency, however, ensuring that files are stored with high

availability becomes more challenging due to the reasons

mentioned above. Further, determining how many replicas

should be maintained for each file to ensure high availability

needs to be carefully considered since storage resources are

typically limited. Thus, the system needs to not only ensure

that data are stored with high availability but it also must

establish a replication policy to efficiently manage and utilize

the storage resources.

We address the reliability issues for computation and data

storage on a heterogeneous, dispersed edge cloud system

called Nebula [7]. We introduce a notion of reliability factor

that defines the reliability of a node. The reliability factor

applies to both a compute and data node. In the case of a

compute node, we consider a node to be be reliable if it can

return correct results in a timely manner. To ensure a high

reliability of processing a task, we incorporate redundancy in

task scheduling to a group of compute nodes that meet the

reliability goal. In the case of a data node, the reliability factor

defines the probability the node being online or available. This

data node reliability factor is used to ensure data availability

in the system. We implement a file replication technique that

dynamically determines how many replicas for each file should

remain online at anytime and where each of them should be

stored based on data nodes’ reliability factor. We show that

our techniques can better meet the availability goal with lower

storage overhead and result in a better performance compared

to the common static replication technique.

II. BACKGROUND: NEBULA EDGE CLOUD

We provide a background of Nebula [7]: the edge cloud that

we consider throughout the paper. Figure 1 shows the Nebula

system architecture. In this paper, we focus on the DataStore



Fig. 1: Nebula system architecture [7]

and ComputePool whose respective masters are responsible for

ensuring data storage availability and task execution reliability

respectively. Other components are explained in [7].

• ComputePool: ComputePool provides per-application com-

putational resources through a set of compute nodes. Compute

nodes within a ComputePool are scheduled by a ComputePool

Master that coordinates their execution. When scheduling

tasks, the ComputePool Master will attempt to maximize data

locality and avoid selecting low-performance nodes which can

be measured based on their reliability factors. The compute

nodes use the DataStore to access and retrieve data.

•DataStore: DataStore is a per-application storage service that

supports efficient and location-aware data storage in Nebula.

Each DataStore consists of data nodes that store actual data,

and a DataStore Master that keeps track of the storage system

metadata and makes data placement decisions.

Throughout the paper, we will only focus on MapRe-

duce [10] applications. However, our techniques are not lim-

ited to Nebula nor the MapReduce computing framework.

III. COMPUTE RELIABILITY

Task processing in a system built from unreliable resources

provides no guarantee whether the computation scheduled on

a compute node will complete the execution nor that it will do

so in a timely manner. Compute nodes that have substantially

lower performance relative to their peers are called stragglers

and are a well-known issue that hinder performance in many

distributed systems [11], [12]. Stragglers may occur for any

number of reasons, including misbehaving hardware, slow

hardware, and abnormally high system load. Stragglers are

examples of performance failures which have been shown to

deteriorate system performance substantially - typically more

than complete failures would.

We solve the issue of compute reliability in Nebula by

combining the notions of timeliness and correctness which

results in a decrease in overall time-to-completion while in-

creasing confidence in the results. We established a notion of a

reliability score (will be discussed in III-A) that is maintained

per-node which defines how reliable a node is. Every node’s

reliability score is considered by the ComputePool Master

scheduler during task scheduling. Furthermore, the scheduler

may also decide to schedule each individual task to groups

of nodes pro-actively rather than individual ones. This redun-

dant task deployment is useful to mitigate the performance

degradation as a result of scheduling the task to a straggler.

Pro-active approaches often sacrifice average-case perfor-

mance for better worst-case performance. If this trade-off

comes with low enough overhead, then it becomes advan-

tageous to take the pro-active approach. When it comes to

detecting stragglers, a passive system needs to observe a

performance failure before it can attempt to mitigate the issue.

Due to the inherent variability in many distributed systems,

such approaches will inevitably be either inadequate or overly

complex. The problem of solving the straggler then effectively

becomes the problem of minimizing the overhead needed to

actively avoid performance failures.

A. Compute Node Reliability Score

The reliability score of a compute node is an estimate used

by the ComputePool Master that predicts the probability that

the node will return a result in a timely manner. We focus on

timing errors only, byzantine errors are outside the scope of

this paper. The ComputePool Master computes approximate

deadlines for tasks when they are assigned to nodes. This is

used to estimate the running time of future tasks and to reduce

the reliability score of nodes that cannot complete their tasks

by the deadline. We allow 30% leeway which permits tasks to

run longer than the original estimate since most of the tasks

can be completed within the extended time period.

The ComputePool Master maintains counters of the total

number of tasks scheduled on a compute node and the number

of responses generated within the approximate deadlines. The

reliability score can then be computed as the percentage

of tasks that are completed within the deadlines. To avoid

unrealistically high or low reliability scores, dynamic limits

are applied to the reliability scores. Let ri represent the relia-

bility score of compute node i, bmax represent the maximum

deviation that we are willing to tolerate, r̄ be the sample

mean, and s represent the corrected sample standard deviation.

If ri < r̄−bmaxs, then compute node i will be ignored during

scheduling due to its lack of reliability. If ri > r̄+bmaxs, then

we set si = r̄ + bmaxs to avoid using reliability scores that

are unrealistically high. Very high scores are likely an artifact

of our scoring mechanism and not a reflection of reality.

B. Task Scheduling

The ComputePool Master scheduler implements locality

task scheduling which will schedule tasks closely to the input

data location. The closeness here is a measurement of network

bandwidth that is monitored and periodically updated by a

network monitoring service. To ensure that a task meets a

certain reliability goal, rgoal, the scheduler incorporates some

redundancy by deploying each task to a group of nodes rather

than to a single node until the following equation holds:

1−
∏

(1− r̂i) ≥ rgoal (1)

Intuitively, by scheduling a task to multiple nodes, the prob-

ability of multiple nodes going down at the same time is



significantly lower than that of a single node. It also improves

the likelihood that the task finishes within the time bound.

We use a Random-Fit algorithm for selecting additional

nodes. Here, the reliability goal can be set as a per-application

parameter based on how critical the application is. However,

this needs to be set carefully. Setting a reliability score too

high in an unreliable environment may degrade the overall

job completion time since the task scheduling may result in

the creation of too many redundant tasks which will limit the

number of distinct tasks running in parallel.

IV. DATA AVAILABILITY

A common technique to ensure data availability is to

maintain a number of replicas for each file. For example,

HDFS [13] uses a replication factor of 3 for each file by

default. In this case, the DataStore Master would periodically

check that for every file, 3 replicas remain online. If any of the

replicas is lost due to failure in a data node storing the replicas,

the DataStore Master would create additional replicas. This is a

straightforward policy to implement, but using a fixed number

of replicas for every file is not an appropriate solution in a

very dynamic and heterogeneous environment.

To ensure that files remain available with high probability,

the system requires knowledge of the reliability of each data

node to determine the replication factor accordingly. The

reliability of a data node can be estimated based on the

probability of the node being online. In fact, it is desirable

for a client of the DataStore to provide an availability goal

and let the system ensure that goal is met. The availability

goal defines the probability that the files remain online.

Alternatively, the availability goal can be implemented on a

per-file basis rather than on a global basis. Having per-file

availability goals has similar complexity to using a global

availability goal but has an additional advantage: It provides

the user with a parameter to adjust the trade-off between high

availability and low replication and storage overhead on a per-

file basis. This has many practical applications. For instance,

in a MapReduce application, one might set the output of the

map tasks to have a relatively low availability goal compared

to the reduce tasks since that data is short-lived. The input

data to a MapReduce job would likely have an even higher

goal than the output of reduce tasks since the MapReduce job

could always be re-executed to retrieve the lost data.

Many data storage systems take advantage of erasure codes

to reduce storage overhead [14], [15]. Applying erasure coding

increases the size of data in exchange for redundancy. It allows

for some k, where k is a configurable parameter, chunks to

be lost while maintaining the ability to recover the original

data with high probability [16]. While convenient and more

storage efficient than making full copies of the data, this

is impractical for many use cases. When erasure codes are

used, a sufficient number of chunks must be downloaded

to reconstruct the original file, the erasure coding must be

applied again, and the missing chunks need to be placed on

new data nodes. This process consumes a substantial amount

of network bandwidth, CPU time, and memory. In systems

with relatively low failures, using erasure coding can have

substantial benefits [17] but for the purposes of Nebula, we

cannot assume this to be the case. For this reason, we opt to

make full copies of the files stored in the Nebula DataStore.

A. Estimating Availability

The data nodes send heartbeats to the DataStore Master to

indicate that they are online. When a heartbeat has not been

received by a predetermined deadline, the DataStore Master

marks the node as being offline. A node i’s history of being

online is used to compute its observed probability of being

offline P̂down,i. This per-node score has a low accuracy when

a data node first joins the system. In particular, it is likely

to be an overestimate of the true availability of the node. So,

we cap its value at 0.95. If P̂down,i is ever an underestimate,

this results in worse utilization but still meets the requested

availability goal, so we do not adjust for this. In order to

choose a set S of nodes to replicate the file onto, new nodes

are added until the following inequality holds:

1−
∏

P̂down,i ≥ Pavailable (2)

The intuition here is the same as the use of reliability scores

that is used by ComputePool Master to add redundancy in

task scheduling (Equation 1). Using this equation gives a

benefit compared to having a static replication factor. In the

case of data nodes having very low availability score, this

technique will give a higher file availability compared to the

static replication. On the other hand, if most of the nodes have

high availability scores, this will result in saving of storage

resources since a smaller number of replicas would be created.

Alternatively, we may use a global availability score P̂down

for all nodes when determining the number of replicas that

needs to be maintained. The global score can be computed as

the percentage of online nodes. This is a simplification, but in

environments where adequate data cannot be found on most

nodes (and default values are used as placeholders), such a

policy can be superior to one using per-node scores. As in the

case of the per-node scores, we cap the value of P̂down to avoid

artificially high availability scores. With this global availability

score, we can compute the number of nodes n necessary to

meet the availability goal by solving the following equation:

n = ⌈
log(1− Pavailable)

logP̂down

⌉ (3)

Choosing which n nodes to use can be implemtyented using a

different node selection policy. We have implemented different

data node selection policies for data upload [7] and similar

policies can be used for selecting data nodes for the replicas.

The data node selection methods described above make

prioritization of data nodes an independent problem because

they are independent of what order the nodes are provided in.

This makes it possible to prioritize nodes by ordering them

in decreasing order. The prioritization that we use is based on

bandwidth estimates between the client requesting the upload

and the data nodes. For data nodes for which no bandwidth

estimates exist, we randomly insert them into the list.



Fig. 2: File upload with redundancy

The actual selection of nodes takes place on the DataStore

Master as shown in Figure 2. This is done for a number of

reasons: it consumes less bandwidth since only the nodes that

should be used for upload to are sent to the client, it simplifies

the centralized work that the DataStore Master needs to do,

and it provides a clean mechanism to refresh stale data. After

the client receives the list of nodes, they upload the file to the

data nodes which in turn informs the DataStore Master that

they have received the file. The DataStore Master ensures that

a sufficient number of replicas are available.

V. EXPERIMENT

We deployed 16 compute and data nodes on PlanetLab [18].

All the Nebula service components were all run on a machine

with an Intel Xeon CPU E5-2609 and 16 GB of memory.

A. Compute Node Reliability

In this experiment, we used a MapReduce wordcount pro-

gram as our application with a 128 MB input file. The file

was split into 10 MB chunks that were randomly distributed

across the data nodes, and we created one map task per chunk.

For our modified scheduler, we enforced a minimum of two

compute nodes per reliability group and a maximum of six.

Additionally, we set bmax = 2 to enforce that reliability

scores be no more than two standard deviations away from

the mean. We then compared the original scheduler to ours

using reliability goals of 0.5, 0.7, and 0.9. We refer to the

scheduler that does not consider reliability as ’MR’ and our

modified versions as ’Repl’.

Figure 3 shows that the use of a higher reliability goal

results in a decrease of the average task running time. This

suggests that the modified scheduler is less susceptible to

variation in performance, and that in the face of stragglers,

the modified scheduler was able to maintain its performance

characteristics better than the original Nebula scheduler. The

performance gain did not result from the scheduling policy

itself, as all the tasks in all cases are scheduled using the

same locality scheduling.

B. Improving Data Availability

In this experiment, we compare the use of a global availabil-

ity score and per-node scores for meeting user-supplied data

availability goals. In both cases, the DataStore Master ensures

that a sufficient number of replicas exist online. Even if all
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of the data nodes holding replicas for the files remain online,

more replicas may be created if the availability score drops

below a certain threshold. This is useful especially in the case

of the global score as a node going offline may decrease the

score, requiring that new replicas be made. We also compare

against a naive policy with a replication factor of 3 when the

file is stored into the DataStore without dynamically creating

more if any replicas go offline. We refer to this policy as static

replication. We deployed Nebula on PlanetLab and Google

Compute Engine [19] with 67 data nodes on PlanetLab and 8

compute nodes on Google Compute Engine.

1) Meeting Availability Goals: To introduce failures in

our experiments, we created a daemon that causes random

failures. After a random wait of at most 2.5 minutes, the

program would make a selection of nodes to kill following a

power-law distribution. Of these, 90% of them were randomly

selected to be restarted after waiting for a maximum of

2.5 minutes. Before beginning any of the experiments, we

introduced a delay to allow the DataStore Master to adjust

availability estimates with the random crashes being run in the

background. After the delay, 2,000 files were uploaded into the

DataStore with availability goals ranging between [0.8,1).

Figure 4(a) compares the mean achieved availability against

the desired availability goal. A file was considered available if

at least one replica remained online. As shown in the figure,

the global availability score resulted in the highest achieved

availability. Interestingly, using the per-node scores was worse

than the static replication except for nodes requesting better

than 95% availability. This is likely due to the inaccuracy in

early measurements of reliability score for each node which

may converge in time. The change at 95% is likely due

to the cap placed on the availability scores as the achieved

availability using the global score also had a jump at this point.

Having the cap at 95% forces the creation of multiple replicas

to achieve high availability.

Figure 4(b) shows that the per-node and global scores

resulted in far lower number of replicas. In the case of the

per-node scores, a new replica will only be created if one

of the nodes storing the replicas is lost. We observed that the

overwhelming majority of online nodes have a high availability

score suggesting that only a small portion of files that are

stored on unreliable data nodes will be replicated.

With global scoring, replicas will be distributed more evenly

across the data nodes whereas the per-file scoring will favor
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to store replicas in a smaller number of nodes with high

availability. This results in a smaller number of replicas created

in the latter case since the files that are stored in a highly

available data nodes may not even be replicated if their

scores have met the availability goal. However, relying on

a smaller number of nodes with high availability results in

larger average deviation compared to distributing the files

more evenly (as shown in Figure 4(a)) since failures on any

high availability nodes will result in larger number of files

becoming unavailable.

2) Performance Impact: We measured the performance

impact of the three replication policies using the Nebula

MapReduce wordcount application with 1 map task per input

chunk and 8 reduce tasks. We used an availability goal of

0.999 for the input data, 0.95 for the intermediate results, and

0.999 for the reduce tasks. We used a lower goal for the map

tasks because the output of the tasks is short-lived and does not

need to be available for a very long time. Our input data was

constructed by randomly selecting connectives, proper names,

words, and two-word phrases from the public domain Websters

Second International Dictionary. The copy used is maintained

by FreeBSD and was checked out in June, 2010. We used

input sizes of 64MB and 128MB and split the data into 1 MB

chunks. The reason we use datasets of this size is because of

PlanetLabs bandwidth limits which is unlikely to be an issue in

a real system. For this test, we did not induce random failures

as we are analyzing performance, not availability of data.

Figure 5 shows that the dynamic replication results in a

lower running time. As all replication policies use the same

prioritization schemes for data nodes, the benefit is unlikely

due to enhanced locality of data. Instead, this is due to the

reduced number of replicas compared to static replication since

uploading multiple copies of the data takes additional time.

VI. RELATED WORK

There have been a number of efforts that have considered

the use of the edge, but most of them focus on achieving better

performance by optimizing task scheduling by minimizing

network overhead without considering the nodes itself [20]–

[23]. There are also projects that have looked at the use

of geo-distributed storage system [24]–[27]. However, they
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mostly focus on an inter-data center environment and focus

on optimizing latency access to the end users or minimizing

monetary cost and simply rely on the underlying distributed

file system for reliability.

There have been projects that have looked at the problem

of building a reliable distributed system using unreliable

nodes. BOINC [28] is popular volunteer-based system for

crowdsourcing computational resources to do scientific re-

search. A system called RIDGE [9] was developed for BOINC

that combined the notions of correctness and timeliness to

redundantly schedule tasks on multiple volunteers and cross-

verify the results to the benefit of both metrics. Google File

System [29] and Amazons Dynamo [30] have looked at this

issue in the context of datacenter computing. These systems

have the property that failures within a cluster are benign and

that machines will remain available for longer periods of time

and with lower variance than in edge cloud systems.

There are many projects that have looked at the issue

of providing reliable data storage in non-datacenter environ-

ments including peer-to-peer systems, volunteer-based sys-

tems, and utility-like data storage systems [14], [15], [31].

The challenges faced by these projects vary substantially. In

OceanStore, only the user is trusted with the non-encrypted

data, and the system has to provide mechanisms to encrypt

and replicate the data in a manner that keeps the contents of

the data available while protecting the data and encryption

keys from being exposed to any third parties including those



responsible for storing the data. Many systems place high

levels of fault-tolerance above all other concerns. They work

to ensure that data remains available even in the face of

Byzantine failures [32]. In addition to providing Byzantine

fault-tolerance, Glacier monitors the number of machines that

fail and increases the amount of replication to tolerate the high

failure rates. Although much of this work is relevant to Nebula,

we find it desirable to have the user provide availability goals

based on the needs of the data that is being stored.

VII. CONCLUSION AND FUTURE WORK

We explored the problem of creating a reliable distributed

system on top of less reliable edge resources. We proposed

an approach to ensure timeliness in the context of tasks pro-

cessing. We discussed and demonstrated that on average, our

technique resulted in tasks completing with better timeliness.

We proposed two mechanisms to meet per-file availability

goals within the DataStore. We compared them with a static

replication policy and showed that using a global availability

score did the best job of meeting the availability goals.

In the future, we would like to further explore the inter-

action between prioritization of storage nodes to maximize

performance and selecting nodes to meet availability goals.

Prioritization inherently causes the load placed on the set

of nodes to be unbalanced. When a node with high priority

fails, a disproportionately large number of file replicas will

be lost. For systems that provide data availability guarantees,

accounting for this trade-off is a requirement.
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