
Multi-Query Optimization in Wide-Area Streaming Analytics

Albert Jonathan
University of Minnesota - Twin Cities

albert@cs.umn.edu

Abhishek Chandra
University of Minnesota - Twin Cities

chandra@cs.umn.edu

Jon Weissman
University of Minnesota - Twin Cities

jon@cs.umn.edu

ABSTRACT

Wide-area data analytics has gained much attention in recent years

due to the increasing need for analyzing data that are geographically

distributed. Many of such queries often require real-time analysis

on data streams that are continuously being generated across multi-

ple locations. Yet, analyzing these geo-distributed data streams in a

timely manner is very challenging due to the highly heterogeneous

and limited bandwidth availability of the wide-area network (WAN).

This paper examines the opportunity of applying multi-query opti-

mization in the context of wide-area streaming analytics, with the

goal of utilizing WAN bandwidth efficiently while achieving high

throughput and low latency execution. Our approach is based on

the insight that many streaming analytics queries often exhibit com-

mon executions, whether in consuming a common set of input data

or performing the same data processing. In this work, we study dif-

ferent types of sharing opportunities and propose a practical online

algorithm that allows streaming analytics queries to share their com-

mon executions incrementally. We further address the importance

of WAN awareness in applying multi-query optimization. Without

WAN awareness, sharing executions in a wide-area environment

may lead to performance degradation. We have implemented our

WAN-aware multi-query optimization in a prototype implementa-

tion based on Apache Flink. Experimental evaluation using Twitter

traces on a real wide-area system deployment across geo-distributed

EC2 data centers shows that our technique is able to achieve 21%

higher throughput while saving WAN bandwidth consumption by

33% compared to a WAN-aware, sharing-agnostic system.

CCS CONCEPTS

• Networks → Wide area networks; • Computer systems organi-

zation → Cloud computing;

KEYWORDS

Geo-distributed systems, stream processing systems, multi-query

optimization, execution sharing

ACM Reference Format:

Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2018. Multi-Query

Optimization in Wide-Area Streaming Analytics. In Proceedings of SoCC

’18: ACM Symposium on Cloud Computing, Carlsbad, CA, USA, October

11–13, 2018 (SoCC ’18), 14 pages.

https://doi.org/10.1145/3267809.3267842

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6011-1/18/10. . . $15.00
https://doi.org/10.1145/3267809.3267842

1 INTRODUCTION

Recent years have seen a growing interest in geo-distributed data

analytics, where analysts need to extract meaningful information

from large amounts of data that are distributed across multiple lo-

cations. Examples of these data include not only traditional log

updates from content distribution networks (CDN) but also user-

generated microblogs, sensor data from distributed IoT devices, and

video streams from distributed surveillance and traffic control cam-

eras. Such data are naturally produced in a geo-distributed manner

near the edge. The main challenge in analyzing these data is in ex-

tracting information in a timely manner [25, 53].

The interest in real-time analysis over continuous data streams

has resulted in the recent development of various scalable stream

processing systems [5, 13, 40, 59, 66]. However, these systems

have been designed primarily for a centralized, tightly-connected

cluster environment where compute nodes are inter-connected with

high-speed network. Using these centralized systems for analyzing

geo-distributed data streams is impractical since it requires transmit-

ting large amounts of data continuously over the wide-area network

(WAN) that has limited bandwidth, slow, and expensive. This cen-

tralization approach typically leads to wasteful WAN bandwidth

utilization and is often unable to satisfy the timeliness requirements

of most data analytics applications, as has been shown by recent

work in geo-distributed data analytics [29, 53, 61, 62].

Most of the work in geo-distributed data analytics has instead fo-

cused on batch-oriented processing, where finite input data sets are

available prior to a query execution [29–31, 53, 61, 62]. In this case,

the main challenge is to schedule each query that minimizes either

the overall execution time or WAN bandwidth consumption. Others

have also looked at the problem of geo-distributed data analytics

in the context of stream-oriented processing where long-running

queries are deployed to extract information from continuous data

streams [26, 32, 52, 54]. However, most of them focused on opti-

mizing an individual query execution. In contrast, we consider opti-

mizing multiple queries by applying multi-query optimization in a

WAN-aware manner.

In practice, the multitenancy nature of a Cloud environment leads

to multiple queries running concurrently and competing for limited,

shared resources. Recent work has indicated that it is common in

a production environment for multiple queries to exhibit common

executions, whether in reading the same set of inputs or perform-

ing the same data processing, especially for queries from the same

application domain or those that rely on popular data [16, 20, 28,

42, 43, 49, 56, 63]. Furthermore, as more and more data are in-

creasingly geo-dependent and made available to the public, it is in-

creasingly likely that more geo-distributed data analytics queries

will share common executions. As a concrete example, Twitter data

streams are commonly analyzed for different purposes including

sentiment analysis [3], finding relevant audiences for an advertise-

ment/campaign [2], and detecting trending topics in a certain area

https://doi.org/10.1145/3267809.3267842
https://doi.org/10.1145/3267809.3267842

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

or globally [37, 41]. Another example includes CDN logs that are

continuously monitored for different goals such as high quality ser-

vice delivery, network monitoring, and user behavior analysis.

Based on this insight, we examine the opportunity of applying

multi-query optimization in the context of wide-area streaming ana-

lytics. Our goal is to efficiently and effectively utilize limited WAN

bandwidth while providing low latency and high throughput execu-

tion of multiple concurrent queries. We first study different types

of cross-query sharing opportunities: (1) input-sharing: where mul-

tiple queries share a common subset of input data, (2) operator-

sharing: where multiple queries perform the same data processing

on the same inputs, and (3) output-sharing: where multiple queries

additionally share partial output (or intermediate) results. Further-

more, we demonstrate the importance of WAN awareness in apply-

ing multi-query optimization in a wide-area environment: both for

query planning and for operator scheduling.

There are a few challenges in applying multi-query optimization

(MQO) in the context of wide-area streaming analytics. First, mul-

tiple queries may be submitted to the system independently at dif-

ferent times by different users and hence, it may not be possible to

optimize these queries together prior to their deployment using the

MQO techniques proposed for batch-oriented workloads [49, 50,

63]. Second, most streaming analytics queries are long-running and

latency sensitive [15, 40, 60]. Thus, it is very inefficient and imprac-

tical to interrupt existing query executions whenever a new query

arrives to optimize them together. Instead, our techniques optimize

multiple query executions in an online manner by allowing queries

to share their common executions incrementally without disrupting

existing executions. The wide-area settings further impose unique

challenges in applying multi-query optimization due to the highly

heterogeneous and limited bandwidth availability of the wide-area

network. We show that applying MQO designed for a local envi-

ronment in a wide-area environment without network awareness is

sub-optimal and may lead to performance degradation due to the

assumptions of homogeneous and high-bandwidth network that are

invalid in real wide-area deployment.

We have implemented our WAN-aware multi-query optimiza-

tion into a system prototype called Sana: an Apache Flink [13]-

based stream processing system that we have adapted for wide-

area deployments. We quantitatively evaluate Sana using 14 geo-

distributed EC2 1 data centers. Our experimental evaluation using

multiple streaming analytics queries [1, 17] on a Twitter trace shows

that Sana is able to achieve 21% higher throughput while saving

WAN bandwidth consumption by 33% compared to the state-of-the-

art WAN-aware, sharing-agnostic system.

We summarize our contributions as follow:

•We propose a multi-query optimization approach that allows mul-

tiple wide-area streaming analytics queries to incrementally share

their common executions in an online manner (§4).

•We address the importance of WAN awareness in applying multi-

query optimization in a wide-area environment, both in planning

and scheduling multiple query executions (§5).

•We have implemented our WAN-aware multi-query optimization

techniques in a system prototype based on Apache Flink (§6).

1https://aws.amazon.com/ec2/

• We experimentally demonstrate the effectiveness of our WAN-

aware multi-query optimization through a real system deployment

across geo-distributed EC2 data centers using Twitter trace-driven

queries (§7).

2 BACKGROUND AND MOTIVATION

In this section, we discuss the background of wide-area streaming

analytics and illustrate through an example the benefits of applying

multi-query optimization to this context.

2.1 Wide-Area Streaming Analytics

Stream Processing Model. Stream processing systems can be gen-

erally classified into two different classes based on their computa-

tional model: (1) the dataflow model [6, 13, 44, 47], and (2) the

bulk-synchronous parallel (BSP) model [14, 33, 66]. Here, we fo-

cus on the dataflow model where data streams flow continuously

from one or more data sources into the system and are transformed

by a set of stream operators. We consider this model over the BSP

model for two reasons. First, it allows data streams to be processed

with lower latency and higher throughput [17, 38]. Second, the BSP

model incurs higher communication overhead due to the frequent

synchronization at every micro-batch boundary [60], which will be

inefficient in a wide-area environment. However, our proposed tech-

niques are not limited to the dataflow processing model, and can be

adapted to the BSP model.

Stream Query Model. A streaming analytics query is typically

written using a high-level, SQL-like language [8, 58]. The query

is (1) translated and optimized by a query optimizer into its corre-

sponding execution plan, represented using a directed acyclic graph

(DAG), and (2) deployed by a job scheduler. A query execution

graph, denoted as д = (V , E), consists of vertices V and edges E.

Each vertex v ∈ V corresponds to a stream operator fv that con-

sumes input streams I from its predecessor (upstream) vertices and

produces output streams O to its successor (downstream) vertices

(O = fv (I)). Each edge e ∈ E represents a data flow between two

vertices. Example of stream operators include source, map, reduce,

join, filter, sink, etc. The source and the sink operators are special-

ized operators that receive input streams from external sources and

output the results to final destinations respectively.

Geo-Distributed Stream Processing. We consider a stream pro-

cessing system consisting of multiple compute nodes that are geo-

graphically distributed across multiple sites, and a master node lo-

cated in one of the sites. A streaming analytics query is submitted to

the master node running a query optimizer and a job scheduler. The

query optimizer will optimize the execution plan of the query (e.g.,

parallelize and chain multiple operators) and the scheduler will de-

ploy each parallel execution instance (task) on a compute node.

The inputs of wide-area streaming analytics queries are produced

by multiple sources that are geo-distributed, and they are continu-

ously ingested into nearby edge clusters or data centers. Examples

of such data streams include sensor readings, microblogs from so-

cial network applications, and log updates from distributed CDN

servers. Each query continuously reads these geo-distributed input

streams, processes them, and outputs its results to one or more fi-

nal locations, e.g., stored in databases, displayed on a monitoring

dashboard, or streamed back as new inputs for iterative analysis.

Multi-Query Optimization in Wide-Area Streaming Analytics SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

(a) Logical plan of Query 1 and Query 2 (b) Independent deployment of Query 1 and Query 2 (c) Shared deployment of Query 1 and Query 2

Figure 1: Example: Execution sharing between two streaming analytics queries in a wide-area environment.

To minimize data transfer overhead between operators, the sched-

uler will try to deploy connecting operators on the same site. How-

ever, common operators such as union, shuffle, and join may require

data to be transmitted across sites since their inputs may be gener-

ated at different locations. Thus, the query optimizer and the job

scheduler should be aware of the underlying WAN topology to gen-

erate an optimized execution plan and a deployment decision that

can effectively utilize WAN bandwidth respectively [30, 53, 61].

2.2 Benefits of Multi-Query Optimization in A

Wide-Area Environment

Multi-Query Optimization in Data Analytics World. Multi-

query optimization (MQO) is a well-studied topic in the database

community to improve the performance of multiple query execu-

tions, especially in relational databases [9, 16, 21, 22, 24, 55, 67].

Since many data analytics queries often rely on common popular

data sets and may perform common executions, recent work has

argued that it is imperative to apply MQO in the context of data

analytics to improve the performance of multiple data analytics

queries [16, 49, 50, 57, 63]. Here, the query optimizer needs to

identify the commonality between queries and potentially combine

their executions to mitigate redundant executions. The combined

execution must produce the same outputs as those produced by

executing the queries independently.

In this paper, we argue that applying multi-query optimization in

a wide-area environment can reduce WAN bandwidth consumption

by eliminating the redundancy in transmitting duplicate data over

the WAN. In the face of bandwidth constraints, this can improve

the overall performance of concurrent query executions. Although

there have been attempts that look at the opportunity of optimiz-

ing multiple queries in the context data analytics, their focus have

been largely on batch-oriented workloads [49, 50, 63]. These ap-

proaches are not applicable for stream-oriented workloads because

most streaming analytics queries are deployed once and run indefi-

nitely [13, 44]. Thus, applying MQO in streaming analytics should

be done in an online manner as new queries arrive by sharing any

common execution incrementally.

Previous attempts have also looked at the opportunity of apply-

ing multi-query optimization for stream-oriented queries over con-

tinuous data streams, but focused on memory limitations because

they were designed for a single-server deployment [20, 28, 45]. On

the other hand, we consider a wide-area environment where the lim-

ited WAN bandwidth is typically the main constraint.

Illustrative Example. To make the problem concrete, consider the

following illustration. Suppose there are 2 analytics queries that are

submitted to the system:

Query 1: A marketing group is monitoring the trending topics in

Twitter across the US, Europe, and Asia to support their operational

decisions:

SELECT Time, Topic, COUNT(*)

FROM Host.US, Host.EU, Host.Asia

GROUP BY WINDOW(Time.Minutes(1)), Topic

HAVING COUNT(*) > 100

Query 2: Another group of analysts is monitoring the impressions

from Twitter users in the US and Europe that are related to a specific

type of campaign:

SELECT Time, AdInfo.Campaign

FROM (SELECT Time, Topic

FROM Host.US, Host.EU

GROUP BY WINDOW(Time.Seconds(30)), Topic

HAVING COUNT(*) > 100) AS Tweet, AdInfo

WHERE AdInfo.Topic = Tweet.Topic

Figure 1(a) shows the logical execution plans of both queries. In

this example, both queries subscribe to common input sources (US

and EU), deserialize, filter, reduce the data (σ and π) to remove irrel-

evant information (e.g., discard user profile), aggregate the results

(∪), and send only the relevant information to their corresponding

final locations. In the case of Query 2, the intermediate results

are further joined (⊲⊳) with static data that are stored in AdInfo.

Figure 1(b) shows the independent deployment of the two

queries. For clarity reasons, suppose the input stream rate from

each source is 10MB/s and the selectivity of each selection and pro-

jection operator is 0.5. We also consider the data transfer overhead

within a site to be negligible since intra-data center bandwidth is

typically 1-2 orders of magnitude higher than inter-data center band-

width [61]. In this case, deploying the two queries independently

will consume WAN bandwidth with a rate of 75MB/s (40MB/s for

Query 1 and 35MB/s for Query 2).

However, we can see that both queries partially share common in-

put streams (US and EU) and perform similar data processing (e.g.,

filtering user info). If the query optimizer is able to identify these

commonalities, it may combine their common executions, which

will significantly reduce the WAN bandwidth consumption rate to

50MB/s = 40MB/s + 10MB/s (Figure 1(c)), which saves ∼33% of

the original bandwidth consumption. This illustration shows that op-

timizing multiple query executions in wide-area streaming analytics

can significantly save WAN bandwidth consumption.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

Figure 2: Sana system architecture.

In addition to saving WAN bandwidth consumption, sharing

common executions between multiple queries can also improve the

overall performance in the face of bandwidth constraints. In the

previous example, if the available bandwidth from the Virginia data

center to the London data center is less than 10MB/s , deploying

the two queries independently will result in bandwidth contention.

One possible solution is to reduce the data transmission rate over

the bottleneck link through approximation, aggregation, or data

reduction, which trades the output’s quality for higher overall per-

formance [18, 20, 28, 54]. Alternatively, the query optimizer may

choose a less optimal query plan that avoids the congested link [61].

However, we argue that making this trade-off is unnecessary if the

system is able to detect that the problem arises due to redundant

data transmission. Furthermore, these techniques still result in a

wasteful bandwidth consumption that could be reduced.

3 SANA: SYSTEM ARCHITECTURE

We propose a geo-distributed stream proccessing system called

Sana which implements multi-query optimization in a WAN-aware

manner. Figure 2 shows the system architecture of Sana. When

a new (possibly a recovery) query is submitted to the system, the

Query Optimizer will optimize its execution plan while consider-

ing the inter-site bandwidth information that is monitored by the

WAN Monitor. This network information is particularly important

in wide-area settings since the optimal execution plan of a wide-

area data analytics query highly depends on the WAN bandwidth

availability between sites [61].

When applying multi-query optimization, the Query Optimizer

will also consider the deployment of the existing queries that is pro-

vided by the Shared Job Manager to identify any commonalities

between the newly submitted queries and the existing ones (§4).

After the optimized query execution plan has been generated, the

Job Scheduler will schedule and deploy each operator instance on

a compute node in a WAN-aware manner to minimize the overall

query execution latency and/or WAN bandwidth consumption (§5).

Once a query has been deployed, it may periodically checkpoint its

execution state and send the state metadata to the Recovery Man-

ager. This mechanism allows the system to replay a query from its

last checkpointed execution state in the case of failures. The imple-

mentation details will be discussed in §6.

4 MULTI-QUERY OPTIMIZATION

In this section, we look at how the query optimizer optimizes mul-

tiple query executions by sharing any commonality between them.

We first study different types of sharing opportunities that can be

exploited between two queries (§4.1), and show how to apply them

across multiple queries (§4.2). We will discuss the WAN awareness

in optimizing multiple query executions in §5.

4.1 Sharing Opportunities

4.1.1 Input-Operator Sharing. A natural way to determine

whether two queries share common executions is to compare their

vertices. Two vertices v1 and v2 are considered equivalent iff they

share the same input streams Iv1
= Iv2

, perform the same trans-

formation function fv1
= fv2

, and thus produce the same output

streams Ov1
= Ov2

. We refer to this type of sharing as IN-OP. In

this case, deploying the two vertices independently will result in a

full redundancy in both transmitting and processing duplicate data.

This redundancy can be eliminated by deploying only one of the

vertices. In this case, the query optimizer can merge the two ver-

tices together, i.e., let the job scheduler know that v2 does not need

to be scheduled if v1 has already been deployed.

In practice, two vertices may share common inputs and opera-

tors, but output the results to a different set of downstream vertices

(possibly with some overlap). We denote the set of v’s downstream

vertices as Dv = {d
0
v , . . . ,d

n−1
v }. These conditions are especially

common in the early stages of executions where multiple queries

may read the same input streams from the same data sources al-

though their downstream vertices tend to be more specific to each

individual query. In this case, the output streams to any of the down-

stream vertices that are not shared by the two vertices need to be

replicated, while the common outputs can be transmitted only once

(Figure 3).

4.1.2 Input-Only Sharing. Since in practice multiple vertices

with different operators/transformation functions may rely on a

common set of input streams, we relax the sharing requirement

of the IN-OP type of sharing by removing the operator-equality

condition, i.e., fv1
, fv2

, therefore Ov1
, Ov2

. This allows two

vertices to share their common input streams even though they have

different operators. We refer to this input-only sharing as IN. In

this case, independently deploying the two vertices will result in re-

dundancy in transmitting duplicate input data. Unlike IN-OP, this

type of sharing requires both vertices to be deployed since they rely

on different transformation functions. However, applying this type

of sharing will eliminate the redundancy in transmitting duplicate

input streams from their common upstream vertices, which can be

highly beneficial in the case where the inputs are transmitted over

slow and limited bandwidth links, as in a wide-area environment.

In wide area settings, the IN type of sharing can be exploited

by deploying the two vertices on the same site (or the same node).

However, the physical deployment of a stream operator is typically

determined by the job scheduler after the query execution plan has

been generated by the query optimizer. Thus, the query optimizer

needs to provide a hint to the job scheduler in exploiting this type

of sharing. The co-location deployment of two vertices does not

necessarily eliminate the redundancy in transmitting duplicate data

because they are still considered as two independent stream edges

Multi-Query Optimization in Wide-Area Streaming Analytics SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Figure 3: IN-OP: Input-Operator Sharing. Here, v1 and v2
share common input streams and operators, but only partially

share the output streams.

to their respective downstream vertices. To exploit this type of shar-

ing, we introduce a lightweight router operator R which (1) keeps

track of the input edges of each input stream originated from re-

mote vertices, and (2) forwards each record to every downstream

vertex without performing any data transformation. Note that the

router operator does not buffer nor batch the records, instead it only

routes the records to multiple operators, similar to the task of router

in networks. Thus, the overhead of the router operator is negligible

as shown in §7.

Partial Input Sharing. In the case of IN-OP, two vertices that

share common operators must rely on the same exact input streams

since in general applying the same transformation to different input

sets does not guarantee the same resulting outputs. This strict input-

stream-equality can further be relaxed in the case of IN since the

two vertices do not rely on the same transformation results. Thus,

the IN type of sharing allows two vertices with different operators

to partially share their input streams (Figure 4).

4.2 Sharing Across Multiple Queries

Having discussed different sharing opportunities that can exist be-

tween two queries, we will now look at how the query optimizer

exploits these opportunities across multiple queries. Since most

streaming analytics queries are long-running, it is possible that a

newly submitted query exhibits common executions with multiple

existing queries that may have already been deployed. Thus, the

query optimizer needs to determine with which of the queries it

should share the new query.

One possible approach to determine which query to share is by

finding a query that exhibits the highest similarity score using a

subgraph-matching algorithm [19, 39]. However, we argue this ap-

proach is sub-optimal since it limits the sharing opportunities to

only 1 query. Instead of finding the similarity in a query-centric

manner, we adopt a vertex-centric philosophy where a query may

share its vertices with multiple queries. This will result in a higher

overall degree of sharing. We compare a new query with each of

the existing queries topologically from the source vertices. Travers-

ing the vertices in topological order gives the benefit of early ter-

mination in traversing a graph. If two vertices are not equivalent

(v1 , v2), by definition, none of their downstream vertices are

equivalent, and hence they do not need to be compared.

Figure 4: IN: Input Sharing. Here, v1 and v2 only partially

share common input streams.

Figure 5: Exploiting common executions across multiple

queries: Here, C shares its execution with both A and B.

Although finding common vertices among multiple queries can

be computationally expensive, this step is only perfomed during the

query planning stage. Since most streaming analytics queries are

long-running, this overhead is justified for higher overall execution

performance and better resource utilization. To reduce the analysis

cost, the query optimizer may limit the number of queries to be

analyzed or adopt a group-based analysis, as proposed by existing

work in Internet Databases [16], which reduces the number of ver-

tices that need to be analyzed.

Figure 5 shows an example where a query (C) shares its exe-

cution with multiple existing queries (A and B). When C arrives,

the query optimizer finds that C shares (1) common input-operators

with B at s5, s6, and v3, with both A and B at s3, s4, and v2, as well

as (2) input streams with B (Iv5
∩ Iv6

, ∅). In this case, the query

optimizer may exploit these sharing opportunities by merging the

common executions of these queries. Thus, the job scheduler only

needs to deploy two additional vertices for query C:v6 that exploits

IN type of sharing withv5, and v7 that does not exhibit any sharing

opportunity with the rest of the vertices, while s3, s4, s5, s6, v2, and

v3 are shared with IN-OP type of sharing.

5 WAN-AWARE OPTIMIZATION

Our discussion so far has focused on the sharing opportunities

between multiple queries without considering the wide-area con-

straints. In this section, we focus on addressing the challenges

of applying these sharing opportunities in a wide-area environ-

ment. Specifically, we propose a WAN-aware optimization to the

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

Figure 6: Multiple sharing opportunities: Here, v exhibits

IN-OP with v2, and IN with both v1 and v3.

query optimizer in generating and optimizing query execution plans

while considering the sharing opportunities with existing query ex-

ecutions (§5.1) and WAN-aware operator placement to the job

scheduler in deploying stream operators (§5.2).

5.1 WAN-Aware Query Planning

In the context of wide-area data analytics, the query optimizer needs

to be aware of the inter-site bandwidth availability to generate an op-

timized query execution plan for each individual query [61]. Simi-

larly, the query optimizer must also optimize multiple query execu-

tions in a WAN-aware manner. The WAN awareness in this context

is used to determine whether a query should share its execution

with other queries (when possible) based on the current WAN band-

width availability between sites. Without WAN awareness, sharing

executions across multiple queries may result in WAN bandwidth

contention that will degrade the performance of either or both the

new and the existing queries.

Since our query optimizer analyzes the commonality between

queries in a vertex-centric manner, a vertex may exhibit more than

one sharing opportunities with multiple vertices from different

queries. Figure 6 shows a situation where vertex v can share both

its inputs and operator with v2, or partially share its inputs with

either v1 or v3. In this case, the query optimizer needs to determine

which of these sharing opportunities should be exploited, or decide

not to share the execution at all.

One possible approach is to choose a vertex that maximizes the

degree of sharing since intuitively it will maximize the duplicate

elimination. However, this naive approach may result in a perfor-

mance degradation. Consider the scenario shown in Figure 6. If the

query optimizer always tries to maximize the sharing regardless of

the network conditions, it will exploit the IN-OP type of sharing

with v2 since the input streams of vertex v are fully covered by

v2. However, we can see that Site-2 does not have sufficient band-

width capacity for transmitting its output streams. Thus, exploiting

IN-OP with v2 may result in bandwidth contention between v , v2,

and v3. On the other hand, if the query optimizer is aware of the

bandwidth constraints, it may exploit the IN type of sharing with

v1 by partially sharing their input streams at Site-1. This decision

is preferable because it does not cause any bandwidth contention

that may degrade the overall performance. Thus, there is a trade-off

between minimizing bandwidth consumption (maximizing sharing)

and maximizing the performance of concurrent executions.

Algorithm 1 WAN-aware execution sharing

1: procedure FIND-COMMON-VERTICES(v ,V)

2: for vi ∈ V topologically do

3: share ← getShareType(v , vi)

4: (BWin, BWout) ← getBandwidth(vi)

5: if share == IN-OP then

6: ∆O ←
|Dv∪Dvi |

|Dvi |
×Ov

7: if BWout > ∆O then

8: add vi to the set of IN-OP vertices

9: end if

10: else if share == IN then

11: ∆I ← Iv − Ivi
12: if BWout > Ov and BWin > ∆I then

13: add vi to the set of IN vertices

14: end if

15: end if

16: end for

17: end procedure

Algorithm 1 shows how the query optimizer considers WAN

bandwidth availability to determine which sharing opportunities (if

any) to be exploited. In the case of IN-OP, the query optimizer

needs to ensure that the site where the shared vertex vi has been

deployed, has sufficient egress bandwidth capacity to transmit addi-

tional output streams (Line 7). This can be estimated proportionally

to the increase in the number of output stream consumers since both

vertices rely on the exact same output data streams (Ov = Ovi),

and only their downstream vertices are different. In the case of

IN where vertices only share partial input streams, the query op-

timizer needs to further ensure there is sufficient bandwidth in both

the ingress and egress links to transmit additional input and output

streams respectively. If the query optimizer predicts that exploiting

the opportunity can potentially result in bandwidth contention, it

will not exploit the opportunity, which trades off bandwidth utiliza-

tion for higher overall performance.

Note from Lines 8 and 13 that the query optimizer outputs a set

of vertices that can be shared by each vertex (if any) instead of

only a single vertex as long as they ensure sufficient bandwidth for

deployment. In this case, the job scheduler needs to choose which

vertex to be shared. We adopt this design to give the job scheduler

a flexibility to apply different optimization in scheduling different

queries. For example, some queries may tolerate higher delay for

lower bandwidth consumption while others may require real-time

results even though they consume more bandwidth.

5.2 WAN-Aware Operator Scheduling

While the previous section focuses on bringing WAN awareness

to the query optimizer in planning a query execution while consid-

ering any commonality with existing queries, this section focuses

on incorporating WAN awareness to the job scheduler in deploy-

ing the execution. Once the query optimizer has identified a set of

vertices that can be shared for each vertex in the query execution

plan, the job scheduler is responsible for the actual deployment of

the vertices themselves. Algorithm 2 shows how the job scheduler

schedules each operator while considering the sharing opportuni-

ties that have been identified by the query optimizer. The scheduler

will place and deploy each operator in the physical execution graph

Multi-Query Optimization in Wide-Area Streaming Analytics SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

Algorithm 2 WAN-aware operator placement

1: procedure SCHEDULE(v)

2: if find vi ∈ set IN-OP then

3: add edges from vi to ∆D ← Dv \Dvi
4: else if find vi ∈ set IN then

5: deploy v at the same site as vi
6: else if Iv are local input streams then

7: site-locality deployment

8: else ⊲ neither share-able nor a local operator

9: WAN-aware deployment

10: end if

11: end procedure

topologically based on the deployment of its upstream vertices. Al-

though this approach may not result in the most optimal end-to-end

deployment of the entire graph, this has been shown to work reason-

ably well in practice with significantly lower complexity [30].

In exploiting the sharing opportunities, the job scheduler priori-

tizes exploiting IN-OP over IN because the gain of IN-OP ≥ IN

in terms of minimizing WAN bandwidth consumption since the for-

mer type of sharing covers the benefits of the latter. Note that ex-

ploiting any of these opportunities guarantees sufficient bandwidth

deployment since the query optimizer has already omitted those that

may result in bandwidth contention. If a vertex exploits the IN-OP

type of sharing with any of the existing vertices, the job scheduler

does not need to deploy the vertex. However, the job scheduler may

need to update the existing execution by creating additional edges

from the shared vertex to any of the additional downstream vertices

that are not shared by the two vertices (Line 3). On the other hand,

vertices that exhibit IN type of sharing will be deployed on the

same site as their corresponding shared vertices to mitigate redun-

dant data transmission over the WAN (Line 5).

If a vertex can be shared with multiple vertices of the same shar-

ing type (e.g., v exhibits IN with both v1 and v3 in Figure 6), the

job scheduler needs to determine which of the vertices should be

shared (Lines 2 and 4). Since our goal is to minimize WAN band-

width consumption, our job scheduler will choose a vertex that max-

imize the sharing. Although maximizing sharing may not necessar-

ily minimize the execution latency, in practice this will result in an

improved execution performance [62]. If the goal is to minimize

delays, the scheduler may choose the vertex that minimizes latency.

Vertices that do not exhibit any sharing opportunities will be de-

ployed based on the locations of their input streams. Those that rely

only on local input streams will be deployed on the same site as

their upstream vertices to minimize the communication overhead,

especially the high latency of the wide area network. On the other

hand, vertices that rely on one or more input streams originated

from remote sites will be deployed using a WAN-aware operator

deployment. We adapt the cost model from Hourglass [52] which

optimizes stream operator placement that balances WAN bandwidth

consumption and latency, by minimizing
∑

ℓ∈L
DRℓ (Latℓ)

2

BWℓ
where ℓ

is a link between two sites, DRℓ is the data rate transmitted over the

link, Latℓ is the latency overhead, and BWℓ is the available band-

width of the link. Any updates on the workload of a link will be

reflected in the bandwidth availability that is continuously being

monitored by the WAN Monitor.

6 IMPLEMENTATION

We have implemented Sana in a system prototype based on Apache

Flink [13] - a stream processing system with the dataflow compu-

tational model. We have modified and adapted the original Flink

system to a wide-area environment by implementing network moni-

toring and multi-query optimization modules, as well as incorporat-

ing WAN awareness to both the query optimizer and job scheduler.

WAN Bandwidth Monitoring. The bandwidth availability be-

tween sites is continuously monitored by the WAN Monitor. Con-

gested links are detected by the ratio of the current bandwidth uti-

lization over the maximum available bandwidth [54]. A ratio of <1

indicates that the network link has spare bandwidth capacity while

a ratio >1 indicates that the bandwidth is contended. This available

bandwidth information is shared with both the query optimizer and

the job scheduler to implement the WAN-aware query planning

(§5.1) and operator scheduling (§5.2) policies respectively.

Multi-Query Optimization. We have implemented our WAN-

aware multi-query optimization module in Flink to find any com-

mon executions between a newly submitted and existing queries in

a WAN-aware manner. To exploit the IN type of sharing, the query

optimizer will modify the original query’s execution plan by adding

a router operator for every vertex that rely on remote input streams.

The router operators are added proactively to prevent suspending

the execution of an existing vertex. Although the use of router oper-

ators would still incur duplicate data streams from the router to the

downstream operators, this data forwarding happens within a local

environment (within a site or even a node) and hence, its overhead

is negligible compared to the overhead from transmitting duplicate

data across sites. We show in §7 that the overhead of the router

operator is negligible even when it is not shared.

WAN-aware Scheduling. The default Flink scheduler has already

implemented node-locality scheduling, which tries to schedule a

vertex on the same node with any of its upstream vertices. How-

ever, if an operator relies on input streams from different nodes, the

original scheduler will choose one of the nodes without considering

the network condition (bandwidth availability and latency) between

them. This simple policy works well in a centralized cluster environ-

ment, for which Flink has been designed. However, this scheduling

policy may result in a non-optimal operator placement in wide-area

settings. We have modified the default Flink’s scheduler by incor-

porating the WAN awareness discussed in §5.2.

Fault Tolerance. A query whose vertices are shared with other

queries may be terminated either intentionally (e.g., the analysis

is complete) or unintentionally (e.g., failure in one of the vertices

in the query plan). To handle these issues, the Shared Job Manager

keeps track of every vertex that is shared with other queries. When-

ever a query that shares a vertex is terminated, it removes the ref-

erence to the shared vertex. A vertex execution will only be termi-

nated if all queries that share the execution have been terminated.

This simple approach prevents cascading failures unless they hap-

pen directly on the stream operator logic.

Recovering from failures that involves shared vertices is chal-

lenging since a stream processing system needs to ensure the

exactly-once semantic processing guarantee. Sana uses a checkpoint-

and-replay fault recovery mechanism, where each query period-

ically checkpoints its processing state and thus the system can

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

Table 1: Query Set

Category Query Examples Num. Operators

Tweet Statistics [rate, count] of [tweet, hashtag] on [location, language, topic] 10-18

Users Analysis [rate, count] of [tweet, hashtag, retweet] on [gender, age-group] per [location, language] 12-18

Top-k Analysis Top-k [popular, trending] [hashtag, topic, retweet] per [language, location] 10-15

Sentiment Analysis [aggregate, categorize] sentiment of each [hashtag, country, topic] 12-18

System Load [rate, count] of [bandwidth usage, request] per [node, region] 6-10

restore its execution from the last checkpointed state upon recover-

ing from failures [12]. We maintain an independent state for each

vertex that is shared by multiple queries. Thus, if a sharing query

fails, other queries can continue their executions and update their

states independently. When a failed query is restarted, it may not

be able to immediately share the vertex it was sharing earlier since

the shared vertex may have a different state. In this case, the query

needs to catch up its processing in order to re-share the vertex.

Query Reconfiguration. Since many streaming analytics queries

are long running, a query needs to gracefully adapt to runtime dy-

namics, such as changes in workload or network topology [27, 35].

In this case, the query optimizer and the scheduler may change

the execution plan and/or the deployment of the query respectively

whenever the environment changes significantly. We are currently

investigating different adaptability policies that can be used to dy-

namically adapt a query execution to handle runtime dynamics in a

wide-area environment without sacrificing the performance of nor-

mal operation nor the output quality [36].

7 EVALUATION

Experimental Setup. We experimentally evaluate the effective-

ness of Sana using a wide-area system deployment across 14 geo-

distributed EC2 data centers. The compute nodes were deployed

on 8 of the sites (Virginia, California, Canada, London, Frankfurt,

Sydney, Tokyo, and Singapore) and the input streams are generated

by external sources that were located on the other 6 sites (Ohio,

Oregon, Ireland, Seoul, Mumbai, and Sao Paulo). To prevent an in-

accurate evaluation caused by the data exchange overhead between

the external sources and the system, we follow the design proposed

by recent work which uses distributed in-memory data generators

instead of message brokers as the external sources [38].

We also measured the bandwidth availability and the latency be-

tween the sites prior to running the experiments as initial network

information to the Network Monitor. Our measurements show that

WAN bandwidth between EC2 data centers ranged from 20Mbps to

280Mbps, confirming a similar trend from prior work [30, 61].

Dataset and Queries. All experiments are based on real Twitter

data that was collected from Twitter Streaming APIs 2 in Decem-

ber 2015. It consists of approximately 4 million tweets per day.

Since the trace only represents a sample of real Twitter workload,

we scaled the playback rate to 6000∼8000 tweets per second to re-

flect the actual tweet rate [4]. The tweets were distributed across the

input sources based on their geographic information.

We implemented 12 analytical queries based on actual stream-

ing analytic queries on Twitter streams [1, 3]. Table 1 shows the

2https://developer.twitter.com/en/docs

summary of the queries. Each query consisted of various combi-

nation of operators including map, reduce, filter, join, union, and

window. Each query subscribed to 4-6 input sources and outputs

its final result locally at the sink operator. Some of the queries also

rely on static data sources. For example, in the case of trend anal-

ysis, the query discards all the irrelevant words by consulting an

external database. Another example includes a sentiment dictionary

used in sentiment analysis. In all of the experiments, each query is

submitted independently with a time gap of 10 seconds to mimic

the independent deployment of most streaming analytics queries in

a practical scenario. Hence, batching multiple queries together prior

to their deployment is impractical.

Evaluation metrics. We use the following metrics to evaluate and

compare the performance of the systems:

• Throughput: The average rate of distinct records/second pro-

cessed by the system for each query. In the face of bandwidth

constraints, the system may trigger a backpressure to reduce

the rate of an input stream.

• WAN Bandwidth Utilization: The average rate of records (in-

cluding duplicates) transmitted over the WAN. This is partic-

ularly critical in a wide-area environment that typically has

limited bandwidth.

• Latency: The latency is measured as an event time latency,

which is the difference between the time when a record is

generated at the external data source and when its processed

output is written to the final location by the sink operator.

7.1 Baseline System Comparison

We evaluated the benefit of WAN-aware multi-query optimization

by comparing the following systems:

• Default: The default Flink system that does not allow shar-

ing executions nor does it implement WAN-aware schedul-

ing, but implements node-locality scheduling.

• NET: A modified Flink system that adopts the WAN-aware

task scheduling algorithm as proposed in Clarinet [61] which

minimizes the execution time by distributing tasks across

sites that provide sufficient bandwidth. However, it does

not allow queries to share common executions. The batch-

schedule optimization in Clarinet is not applicable to this

context due to the independent deployment of the queries.

• MQO: A modified Flink system that allows queries to share

common executions. But, it does not implement WAN-aware

scheduling (default Flink scheduler).

• Sana: Our modified Flink system that incorporates the WAN

awareness in both optimizing multiple query executions and

scheduling stream operators.

Multi-Query Optimization in Wide-Area Streaming Analytics SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 2000

 4000

 6000

Default NET MQO Sana

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

(a) Overall throughput

 0

 20

 40

 60

 80

 100

Default NET MQO Sana

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

(b) Average bandwidth utilization

 0

 20

 40

 60

 80

 100

Default NET MQO Sana9
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

%
)

(c) Average 95th latency relative to Default

Figure 7: Overall system performance comparison

 0
 25
 50
 75

 100
 125
 150
 175
 200

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(%

)

Query #

NET MQO Sana

(a) Per-query throughput

 0
 25
 50
 75

 100
 125
 150
 175
 200

1 2 3 4 5 6 7 8 9 10 11 12B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

%
)

Query #

NET MQO Sana

(b) Per-query bandwidth utilization

 0

 25

 50

 75

 100

 125

 150

1 2 3 4 5 6 7 8 9 10 11 129
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

%
)

Query #

NET MQO Sana

(c) Per-query latency

Figure 8: Per-query performance gain and bandwidth utilization relative to Default.

Figure 7 compares the overall performance of different systems

for running the 12 queries concurrently. We can see from Fig-

ure 7(a) that Sana resulted in 44%, 16%, and 26% higher through-

put compared to Default, NET, and MQO respectively. Figure 7(b)

also shows that Sana was able to achieve these performance gains

while consuming significantly lower bandwidth compared to both

Default and NET (∼33% less bandwidth utilization). This indicates

that Sana can efficiently utilize WAN bandwidth by preventing

transmitting duplicate records over the constrained network links.

Although MQO consumed less bandwidth with respect to Sana,

the bandwidth utilized by Sana is effectively used to transmit a

higher number of records per second. Furthermore, MQO resulted

in a higher overall latency compared to Sana and NET, as shown

in Figure 7(c). This highlights the importance of WAN-aware op-

erator scheduling to effectively utilize limited network bandwidth

in a wide-area environment. The latency and throughput gains

achieved by MQO with respect to Default is because MQO utilized

the available bandwidth more efficiently by preventing transmitting

redundant data over the WAN.

We further break down the overall performance and WAN band-

width consumption rate of the queries to observe the gain for each

individual query relative to Default (see Figure 8). We make a

few observations. First, we can see from Figure 8(a) that NET was

able to improve the overall throughput of each query by up to 48%

and resulted in 40% lower latency compared to Default (see Fig-

ure 8(c)). However, we can also see from Figure 8(b) that the WAN-

aware scheduling in NET that tries to minimize query execution

latency does not reduce the overall WAN bandwidth consumption

even though it resulted in higher throughput. This indicates that NET

was able to process a higher rate of data streams by avoiding over-

loaded network links.

Secondly, we can see from Figure 8(b) that MQO is able to sig-

nificantly reduce the bandwidth utilization by up to 60% by sharing

common executions between queries. The only cases where the MQO

could not reduce the bandwidth utilization were for query 1 and 7

which do not exhibit any commonality with the other queries. How-

ever, we can see from Figure 8(a) that query 7 was able to process

more data streams with a similar increase. This indicates that the

bandwidth was efficiently used for transmitting a higher rate of data

streams. We can also see from Figure 8(b) and Figure 8(c) that al-

though NET consumed higher network bandwidth compared to the

MQO it was able to outperform MQO for most queries in terms of min-

imizing execution latency. This shows that minimizing WAN band-

width consumption in a wide-area environment does not necessarily

minimize the query execution latency.

Thirdly, we can see that Sana improves the overall performance

of each query execution while significantly consuming less network

bandwidth. Specifically, it resulted in up to of 87% higher through-

put and 68% lower latency compared to Default. Similar to the

MQO case, both query 1 and 7 consumed higher bandwidth, but the

extra bandwidth is used for transmitting more data. Furthermore,

Sana also achieves 21% higher throughput compared to NET by

eliminating redundant data transmission, as reflected by the reduc-

tion in bandwidth utilization for most queries. Lastly, even though

Sana consumed more bandwidth compared to MQO, it resulted in

a higher throughput for transmitting more data. These experiments

show Sana can utilize WAN bandwidth effectively and efficiently.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 6 8

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Number of queries

No-Share
Strict-Share

Sana

(a) Average throughput

 0

 10

 20

 30

 40

 50

 60

1 2 4 6 8

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Number of queries

No-Share
Strict-Share

Sana

(b) Average bandwidth utilization

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 6 89
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

Number of queries

No-Share
Strict-Share

Sana

(c) 95th percentile latency

Figure 9: Impact of higher degree of sharing over different number of concurrent queries

 0

 4000

 8000

 12000

 16000

4000 8000 12000 16000

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Input stream rate (records/s)

No-Share
Strict-Share

Sana

(a) Average throughput

 0

 10

 20

 30

 40

 50

 60

4000 8000 12000 16000

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Input stream rate (records/s)

No-Share
Strict-Share

Sana

(b) Average bandwidth utilization

 0

 500

 1000

 1500

 2000

 2500

 3000

4000 8000 12000 160009
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

Input stream rate (records/s)

No-Share
Strict-Share

Sana

(c) 95th percentile latency

Figure 10: Impact of higher degree of sharing over different input stream rate

7.2 Impact of Degree of Sharing

In the next set of experiments, we explore the impact of degree of

sharing in applying multi-query optimization. Specifically, the ben-

efit of allowing queries to partially share common input streams

even though their operators are different. All systems in the follow-

ing experiments apply WAN-aware operator scheduling. Thus, the

differences in the results are strictly based on the different execution

plans generated by the query optimizer. We compare Sana (which

allows IN and IN-OP) against (1) No-Share, which does not con-

sider execution sharing, and (2) Strict-Share whose query opti-

mizer only allows queries to share vertices if they share the same

inputs and operators (IN-OP only). In contrast to Strict-Share,

Sana allows queries to share partial input streams.

Varying number of concurrent queries. Figure 9 compares the

three query optimizers over varying number of concurrent queries.

In the case of a single query execution, all the query optimizers

generated the same execution plan. However, as the number of

queries increased Sana was able to exploit a higher degree of shar-

ing by allowing queries to partially share their executions. This

resulted in a lower bandwidth consumption and approximately 78%

and 37% higher throughput execution compared to No-Share and

Strict-Share respectively (see Figures 9(b) and 9(a)). We can

also see from Figure 9(c) that allowing partial input sharing can also

reduce the overall execution latency due to the higher bandwidth

availability, which provides a higher flexibility to the job scheduler

to deploy the queries more optimally.

Figure 9(b) shows that although No-Share consumed 41% and

65% higher bandwidth compared to Strict-Share and Sana

respectively, it resulted in an overall lower throughput. This indi-

cates there was a large amount of redundant data being transmitted

over the WAN. The Strict-Share also consumed slightly more

bandwidth compared to Sana but resulted in a lower throughput,

which highlights the importance of (partially) sharing common

input streams even for different operators. From Figure 9(c), we

can also see that the overhead of the router operators that were

added to route input streams from remote sites is negligible (∼5%)

even when they are not utilized, as shown in the case with 1 query

execution. Thus, the router operator can reduce the redundancy in

transmitting duplicate data over the WAN.

Varying input stream rates. In the following experiments, we eval-

uate the impact of the degree of sharing over different rates of in-

put streams with 4 concurrent queries. Figure 10(a) shows that as

the input data rate increases, Sana resulted in a higher throughput

while consuming lower bandwidth compared to both No-Share

and Strict-Share (Figure 10(b)). Furthermore, Sana was able

to significantly reduce the overall execution latency compared to

No-Share and Strict-Share, similar to the effect of increasing

the number of queries (Figure 10(c)). This shows that (1) applying

WAN-aware multi-query optimization allows the system to scale as

workload increases, and (2) allowing queries to share common input

streams even if they have different operators will further improve

the performance and reduce the overall bandwidth consumption.

Multi-Query Optimization in Wide-Area Streaming Analytics SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 6 8

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Number of queries

No-Share
Max-Share

Sana

(a) Average throughput

 0

 10

 20

 30

 40

 50

 60

1 2 4 6 8

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Number of queries

No-Share
Max-Share

Sana

(b) Average bandwidth utilization

 0

 1000

 2000

 3000

 4000

 5000

1 2 4 6 89
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

m
s
)

Number of queries

No-Share
Max-Share

Sana

(c) 95th percentile latency

Figure 11: WAN-aware query planning: trading-off bandwidth utilization for performance

7.3 WAN-Aware Execution Sharing: Bandwidth

Utilization vs. Performance Trade-Off

In the following experiments, we show the importance of network

awareness in applying multi-query optimization in a wide-area en-

vironment to maintain high performance executions while reducing

WAN bandwidth consumption (§5.1). We compared Sana against

(1) No-Share which did not exploit any execution sharing and (2)

Max-Sharewhich allowed queries to share common executions but

did not consider the WAN bandwidth availability in sharing exe-

cutions. In contrast to Sana, the latter will always try to exploit

any sharing opportunity that maximize the sharing regardless of

the WAN bandwidth availability, which is essentially the traditional

multi-query optimization for a local environment. The main prob-

lem with maximizing sharing without network awareness in a wide-

area environment is that it may result in WAN bandwidth contention

between queries, which can degrade the performance of either or

both the sharing and the shared executions.

Figure 11(a) and Figure 11(c) show that Sana resulted in 35%

higher throughput and 23% lower latency compared to Max-Share,

but consuming approximately 20% higher bandwidth. The perfor-

mance gain achieved by Sana compared to Max-Share is because

Sana’s query optimizer prevented exploiting sharing opportunities

that led to bandwidth contention which would degrade the overall

performance. We can also see that as the number of queries in-

creases, the performance gap between Sana and Max-Share also

increases. This indicates that the WAN awareness in Sana resulted

in less number of contended links. Thus, there is a trade-off between

minimizing WAN bandwidth utilization and maximizing the overall

performance of multiple query executions.

7.4 Potential Bandwidth Saving

In the following experiments, we observe the potential bandwidth

saving from applying multi-query optimization in the case where

network bandwidth is not constrained. We deployed Sana on a lo-

calized CloudLab3 environment where the available bandwidth be-

tween nodes are higher than the rate of the data streams. In such a

condition where bandwidth is sufficient, reducing the data transfer

over the network is still desirable in a wide-area environment since

WAN bandwidth is expensive in terms of monetary cost [64].

3https://www.cloudlab.us/

 0

 10

 20

 30

 40

 50

 60

1 2 4 6 8B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Number of queries

No-Share
Strict-Share

Sana

(a) Bandwidth utilization over different
number of queries

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Shared ratio

No-Share
Strict-Share

Sana

(b) Bandwidth utilization over different
shared-ratio

Figure 12: Network bandwidth saving

Figure 12(a) and Figure 12(b) show the average bandwidth con-

sumption rate over different number of concurrent queries and shar-

ing ratio respectively. The sharing ratio is defined as the percent-

age of vertices that are shared between queries. The average shar-

ing ratio between the queries in Figure 12(a) was approximately

0.2 whereas the number of concurrent queries in Figure 12(b) was

set to 4. We can see from both figures that Sana greatly mitigates

the bandwidth consumption as the number of queries and the shar-

ing ratio increase. Specifically, it resulted in up to 60% reduction

in bandwidth consumption rate compared to the sharing-agnostic

approach. Thus applying multi-query optimization even in an un-

constrained wide-area environment can still reduce the bandwidth

utilization and save monetary cost.

8 RELATED WORK

Geo-Distributed Data Analytics. Table 2 shows where Sana

stands in the world of geo-distributed data analytic systems. Irid-

ium [53] proposes a WAN-aware optimization that minimizes query

execution latency for batch-oriented workloads by proactively mi-

grating input data prior to the arrivals of queries based on history.

Geode [62] also relies on recurring queries but focuses on minimiz-

ing WAN bandwidth consumption by sending only the diff of input

data over the wide-area network for subsequent queries. In contrast

to both approaches, Sana focuses on stream-oriented workloads

where most queries are long-running and consume data streams

that are continuously being generated in real time. Furthermore,

Sana does not make any assumptions on the query arrivals. None

of these techniques support multi-query optimization.

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

Table 2: Geo-distributed Data Analytics Systems

Systems Workload Type WAN-Aware Optimization Multi-Query Optimization

Iridium [53] Recurring Data and task placements prior to query arrivals N/A

Geode [62] Recurring diff or incremental data transfer over the WAN N/A

Clarinet [61] Batch WAN-aware query plan selection Multiple job scheduling

Tetrium [30] Batch Heterogeneous network and compute resource scheduling Multiple job scheduling

JetStream [54] Stream Data aggregation/degradation using data cube abstraction N/A

Sana Stream WAN-aware operator sharing and scheduling Execution sharing (data transfer and processing)

Both Clarinet [61] and Tetrium [30] look at optimizing batch-

oriented queries in a wide-area environment. Specifically, Clarinet

incorporates WAN awareness into the query optimizer to choose

a query execution plan based on inter-site bandwidth availability,

whereas Tetrium additionally considers the heterogeneity of com-

putational resources across sites in scheduling jobs. In addition to

incorporating WAN-aware optimization for single-query deploy-

ment, both of them consider optimizing multiple query executions

by batch-scheduling multiple queries rather than scheduling each

query independently. Their approaches, however, are not feasible

for stream-oriented workloads. Furthermore, they do not allow

queries to share common executions and hence their techniques

would still result in a redundant data transmission and processing.

In contrast, Sana can eliminate redundant executions and optimize

multiple query executions in an incremental manner, which is criti-

cal for long-running, continuous queries.

Recent attempts have also considered optimizing stream-oritented

queries in a wide-area environment. Photon [7] and Ubiq [10] ad-

dress the fault tolerant aspect of geo-distributed data analytics over

continuous data streams in production clusters. JetStream [54] han-

dles WAN bandwidth limitation by making a trade-off between

output quality and performance, which may not be applicable for

queries that rely on exact results. Heintz et al. [26] propose an on-

line algorithm that trades off timeliness and acccuracy in the context

of windowed grouped aggregation. Pietzuch et al. [52] examine the

problem of operator placement on the open Internet environment.

Although they related to our work, they mainly focus on optimizing

each individual query independently.

Others have also looked at optimizing different types of work-

loads in a wide-area environment. Gaia [29] proposes a system

that optimizes machine learning workloads in a wide-area environ-

ment by identifying and eliminating any insignificant updates over

the WAN. Monarch [34] focuses on geo-distributed graph analytics

workloads by adapting and optimizing an existing processing model

to a wide-area environment.

Multi-Query Optimization. The problem of multi-query optimiza-

tion has been extensively studied in classic RDBMS [21, 55] and

have been adopted for OLAP workloads [9, 11, 22, 24, 67] and later,

data analytics [43, 49, 63]. Sana adopts the data-centric philoso-

phy with pipelining technique [24] to share common executions be-

tween streaming queries. Although most of them are related to our

work, they focus on a local environment whereas Sana focuses on a

wide-area environment with different bottleneck. We show that ap-

plying traditional multi-query optimization designed for a local en-

vironment in wide-area settings without WAN awareness may lead

to performance degradation.

Other research has also examined the problem of multi-query op-

timization over continuous data streams in streaming databases [20,

28, 56]. Seshadri et al. [56] propose an algorithm to find an opti-

mal execution plan with reduced search space. Rule-based [28] and

sketch-based [20] optimization have also been proposed for multi-

ple queries over data streams, and NiagaraCQ [16] addresses the

scalability issue in applying multi-query optimization for Internet

Databases. Although they are related to our work, they are typi-

cally constrained by memory resources since they focus on a single-

server deployment.

Incremental Processing and Caching Systems. It is worth men-

tioning that our work shares similarity with other work in incremen-

tal processing [46, 51] and caching systems [14, 23, 48, 65] since

they also address the problem of redundant computation. However,

they are orthogonal to our work. The incremental processing tech-

nique can be applied by each individual query by updating its state

incrementally instead of computing from the beginning [37]. How-

ever, this is application-specific. Caching intermediate hot data also

prevents performing redundant data processing, but it may not be

applicable for queries that rely on real-time data streams. Thus,

these techniques can be used in conjunction with our techniques.

9 CONCLUSION

This paper introduces Sana, a system that optimizes multiple query

executions in the context of wide-area streaming analytics. We ob-

served that many streaming analytics queries often rely on common

input streams from popular data sources and may exhibit common

data processing. Thus, there is an opportunity of applying multi-

query optimization in this context to mitigate the redundancy in

transmitting duplicate data over the wide-area network (WAN) that

has limited bandwidth. In this paper, we study different types of

sharing opportunities and propose a multi-query optimization that

allows multiple queries to incrementally share common executions

in an online manner. We also address the importance of WAN aware-

ness in applying multi-query optimization in a wide-area environ-

ment. We show that a WAN-agnostic multi-query optimization may

lead to performance degradation. The evaluation using a wide-area

system deployment across multiple geo-distributed EC2 data cen-

ters shows that Sana resulted in 21% higher throughput while sav-

ing WAN bandwidth utilization by 33% compared to a WAN-aware,

sharing-agnostic system.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous SoCC reviewers

for their valuable comments and feedback. The work is supported

by grant NSF CNS-1619254 and CNS-1717834.

Multi-Query Optimization in Wide-Area Streaming Analytics SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA

REFERENCES
[1] 2017. Twitter analytics. (2017). https://analytics.twitter.com/about
[2] 2017. Twitter analytics for business. (2017).

https://business.twitter.com/en/analytics.html
[3] 2017. Twitter sentiment analysis in Azure. (2017).

https://docs.microsoft.com/en-us/azure/stream-analytics
[4] 2017. Twitter usage statistics. (2017).

http://www.internetlivestats.com/twitter-statistics/
[5] Tyler Akidau, Alex Balikov, Kaya Bekiroğlu, Slava Chernyak, Josh Haberman,

Reuven Lax, Sam McVeety, Daniel Mills, Paul Nordstrom, and Sam Whittle.
2013. MillWheel: fault-tolerant stream processing at internet scale. Proceedings

of the VLDB Endowment 6, 11 (2013), 1033–1044.
[6] Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak, Rafael J

Fernández-Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills, Frances Perry,
Eric Schmidt, et al. 2015. The dataflow model: a practical approach to balanc-
ing correctness, latency, and cost in massive-scale, unbounded, out-of-order data
processing. Proceedings of the VLDB Endowment 8, 12 (2015), 1792–1803.

[7] Rajagopal Ananthanarayanan, Venkatesh Basker, Sumit Das, Ashish Gupta,
Haifeng Jiang, Tianhao Qiu, Alexey Reznichenko, Deomid Ryabkov, Manpreet
Singh, and Shivakumar Venkataraman. 2013. Photon: Fault-tolerant and scalable
joining of continuous data streams. In Proceedings of the 2013 ACM SIGMOD

international conference on management of data. ACM, 577–588.
[8] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K

Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali Ghodsi, et al.
2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data. ACM, 1383–
1394.

[9] Subi Arumugam, Alin Dobra, Christopher M Jermaine, Niketan Pansare, and
Luis Perez. 2010. The DataPath system: a data-centric analytic processing en-
gine for large data warehouses. In Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of data. ACM, 519–530.
[10] Venkatesh Basker, Manish Bhatia, Vinny Ganeshan, Ashish Gupta, Shan He,

Scott Holzer, Haifeng Jiang, Monica Chawathe Lenart, Navin Melville, Tianhao
Qiu, et al. [n. d.]. Ubiq: A Scalable and Fault-tolerant Log Processing Infrastruc-
ture. ([n. d.]).

[11] George Candea, Neoklis Polyzotis, and Radek Vingralek. 2009. A scalable, pre-
dictable join operator for highly concurrent data warehouses. Proceedings of the

VLDB Endowment 2, 1 (2009), 277–288.
[12] Paris Carbone, Stephan Ewen, Gyula Fóra, Seif Haridi, Stefan Richter, and

Kostas Tzoumas. 2017. State management in Apache Flink®: consistent state-
ful distributed stream processing. Proceedings of the VLDB Endowment 10, 12
(2017), 1718–1729.

[13] Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi,
and Kostas Tzoumas. 2015. Apache flink: Stream and batch processing in a
single engine. Bulletin of the IEEE Computer Society Technical Committee on

Data Engineering 36, 4 (2015).
[14] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert R

Henry, Robert Bradshaw, and Nathan Weizenbaum. 2010. FlumeJava: easy, effi-
cient data-parallel pipelines. In ACM Sigplan Notices, Vol. 45. ACM, 363–375.

[15] Sirish Chandrasekaran and Michael J Franklin. 2002. Streaming queries over
streaming data. In Proceedings of the 28th international conference on Very Large

Data Bases. VLDB Endowment, 203–214.
[16] Jianjun Chen, David J DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ:

A scalable continuous query system for internet databases. In ACM SIGMOD

Record, Vol. 29. ACM, 379–390.
[17] Sanket Chintapalli, Derek Dagit, Bobby Evans, Reza Farivar, Thomas Graves,

Mark Holderbaugh, Zhuo Liu, Kyle Nusbaum, Kishorkumar Patil, Boyang Jerry
Peng, et al. 2016. Benchmarking streaming computation engines: Storm, Flink
and Spark streaming. In Parallel and Distributed Processing Symposium Work-

shops, 2016 IEEE International. IEEE, 1789–1792.
[18] Michael Chow, Kaushik Veeraraghavan, Michael J Cafarella, and Jason Flinn.

2016. DQBarge: Improving Data-Quality Tradeoffs in Large-Scale Internet Ser-
vices.. In OSDI. 771–786.

[19] Luigi P Cordella, Pasquale Foggia, Carlo Sansone, and Mario Vento. 2004. A
(sub) graph isomorphism algorithm for matching large graphs. IEEE transactions

on pattern analysis and machine intelligence 26, 10 (2004), 1367–1372.
[20] Alin Dobra, Minos Garofalakis, Johannes Gehrke, and Rajeev Rastogi. 2004.

Sketch-based multi-query processing over data streams. In EDBT, Vol. 4.
Springer, 551–568.

[21] Sheldon Finkelstein. 1982. Common expression analysis in database applications.
In Proceedings of the 1982 ACM SIGMOD international conference on Manage-

ment of data. ACM, 235–245.
[22] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. 2012. SharedDB:

killing one thousand queries with one stone. Proceedings of the VLDB Endow-

ment 5, 6 (2012), 526–537.

[23] Pradeep Kumar Gunda, Lenin Ravindranath, Chandramohan A Thekkath, Yuan
Yu, and Li Zhuang. 2010. Nectar: Automatic Management of Data and Compu-
tation in Datacenters.. In OSDI, Vol. 10. 1–8.

[24] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki. 2005.
QPipe: a simultaneously pipelined relational query engine. In Proceedings of the

2005 ACM SIGMOD international conference on Management of data. ACM,
383–394.

[25] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. 2015. Optimiz-
ing grouped aggregation in geo-distributed streaming analytics. In Proceedings of

the 24th International Symposium on High-Performance Parallel and Distributed

Computing. ACM, 133–144.
[26] Benjamin Heintz, Abhishek Chandra, and Ramesh K Sitaraman. 2016. Trad-

ing Timeliness and Accuracy in Geo-Distributed Streaming Analytics.. In SoCC.
361–373.

[27] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mo-
han Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with
software-driven WAN. In ACM SIGCOMM Computer Communication Review,
Vol. 43. ACM, 15–26.

[28] Mingsheng Hong, Mirek Riedewald, Christoph Koch, Johannes Gehrke, and Alan
Demers. 2009. Rule-based multi-query optimization. In Proceedings of the 12th

International Conference on Extending Database Technology: Advances in Data-

base Technology. ACM, 120–131.
[29] Kevin Hsieh, Aaron Harlap, Nandita Vijaykumar, Dimitris Konomis, Gregory R

Ganger, Phillip B Gibbons, and Onur Mutlu. 2017. Gaia: Geo-Distributed Ma-
chine Learning Approaching LAN Speeds.. In NSDI. 629–647.

[30] Chien-Chun Hung, Ganesh Ananthanarayanan, Leana Golubchik, Minlan Yu,
and Mingyang Zhang. 2018. Wide-area analytics with multiple resources. In
Proceedings of the Thirteenth EuroSys Conference. ACM, 12.

[31] Chien-Chun Hung, Leana Golubchik, and Minlan Yu. 2015. Scheduling jobs
across geo-distributed datacenters. In Proceedings of the Sixth ACM Symposium

on Cloud Computing. ACM, 111–124.
[32] Jeong-Hyon Hwang, Ugur Cetintemel, and Stan Zdonik. 2007. Fast and reliable

stream processing over wide area networks. In Data Engineering Workshop, 2007

IEEE 23rd International Conference on. IEEE, 604–613.
[33] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.

Dryad: distributed data-parallel programs from sequential building blocks. In
ACM SIGOPS operating systems review, Vol. 41. ACM, 59–72.

[34] Anand Padmanabha Iyer, Aurojit Panda, Mosharaf Chowdhury, Aditya Akella,
Scott Shenker, and Ion Stoica. 2018. Monarch: Gaining Command on Geo-
Distributed Graph Analytics. In 10th USENIX Workshop on Hot Topics in Cloud

Computing (HotCloud 18). USENIX Association.
[35] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:
Experience with a globally-deployed software defined WAN. ACM SIGCOMM

Computer Communication Review 43, 4 (2013), 3–14.
[36] Albert Jonathan, Abhishek Chandra, and Jon Weissman. 2018. Rethinking Adapt-

ability in Wide-Area Stream Processing Systems. In 10th USENIX Workshop on

Hot Topics in Cloud Computing (HotCloud 18). USENIX Association.
[37] Christopher Jonathan, Amr Magdy, Mohamed F Mokbel, and Albert Jonathan.

2016. GARNET: A holistic system approach for trending queries in microblogs.
In Data Engineering (ICDE), 2016 IEEE 32nd International Conference on.
IEEE, 1251–1262.

[38] Jeyhun Karimov, Tilmann Rabl, Asterios Katsifodimos, Roman Samarev, Henri
Heiskanen, and Volker Markl. [n. d.]. Benchmarking Distributed Stream Data
Processing Systems. ([n. d.]).

[39] Danai Koutra, Ankur Parikh, Aaditya Ramdas, and Jing Xiang. 2011. Algorithms
for graph similarity and subgraph matching. Dept. Comput. Sci., Carnegie Mellon

Univ., Pittsburgh, PA, USA, Tech. Rep (2011).
[40] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M Patel, Karthik Ramasamy, and Siddarth
Taneja. 2015. Twitter heron: Stream processing at scale. In Proceedings of the

2015 ACM SIGMOD International Conference on Management of Data. ACM,
239–250.

[41] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. 2010. What is
Twitter, a social network or a news media?. In Proceedings of the 19th interna-

tional conference on World wide web. ACM, 591–600.
[42] Wangchao Le, Anastasios Kementsietsidis, Songyun Duan, and Feifei Li. 2012.

Scalable multi-query optimization for SPARQL. In Data Engineering (ICDE),

2012 IEEE 28th International Conference on. IEEE, 666–677.
[43] Chuan Lei, Zhongfang Zhuang, Elke A Rundensteiner, and Mohamed Eltabakh.

2015. Shared execution of recurring workloads in MapReduce. Proceedings of

the VLDB Endowment 8, 7 (2015), 714–725.
[44] Wei Lin, Haochuan Fan, Zhengping Qian, Junwei Xu, Sen Yang, Jingren Zhou,

and Lidong Zhou. 2016. StreamScope: Continuous Reliable Distributed Process-
ing of Big Data Streams.. In NSDI, Vol. 16. 439–453.

[45] Samuel Madden, Mehul Shah, Joseph M Hellerstein, and Vijayshankar Raman.
2002. Continuously adaptive continuous queries over streams. In Proceedings of

the 2002 ACM SIGMOD international conference on Management of data. ACM,

https://analytics.twitter.com/about
https://business.twitter.com/en/analytics.html
https://docs.microsoft.com/en-us/azure/stream-analytics
http://www.internetlivestats.com/twitter-statistics/

SoCC ’18, October 11–13, 2018, Carlsbad, CA, USA Albert Jonathan, Abhishek Chandra, and Jon Weissman

49–60.
[46] Mohamed F Mokbel, Xiaopeing Xiong, and Walid G Aref. 2004. SINA: Scal-

able incremental processing of continuous queries in spatio-temporal databases.
In Proceedings of the 2004 ACM SIGMOD international conference on Manage-

ment of data. ACM, 623–634.
[47] Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,

and Martín Abadi. 2013. Naiad: a timely dataflow system. In Proceedings of the

Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM, 439–
455.

[48] Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil
Madhavapeddy, and Steven Hand. 2011. CIEL: a universal execution engine
for distributed data-flow computing. In Proc. 8th ACM/USENIX Symposium on

Networked Systems Design and Implementation. 113–126.
[49] Tomasz Nykiel, Michalis Potamias, Chaitanya Mishra, George Kollios, and Nick

Koudas. 2010. MRShare: sharing across multiple queries in MapReduce. Pro-

ceedings of the VLDB Endowment 3, 1-2 (2010), 494–505.
[50] Christopher Olston, Benjamin Reed, Adam Silberstein, and Utkarsh Srivastava.

2008. Automatic Optimization of Parallel Dataflow Programs.. In USENIX An-

nual Technical Conference. 267–273.
[51] Daniel Peng and Frank Dabek. 2010. Large-scale Incremental Processing Using

Distributed Transactions and Notifications.. In OSDI, Vol. 10. 1–15.
[52] Peter Pietzuch, Jonathan Ledlie, Jeffrey Shneidman, Mema Roussopoulos, Matt

Welsh, and Margo Seltzer. 2006. Network-aware operator placement for stream-
processing systems. In Data Engineering, 2006. ICDE’06. Proceedings of the

22nd International Conference on. IEEE, 49–49.
[53] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya

Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data
analytics. ACM SIGCOMM Computer Communication Review 45, 4 (2015), 421–
434.

[54] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J Freed-
man. 2014. Aggregation and Degradation in JetStream: Streaming Analytics in
the Wide Area.. In NSDI, Vol. 14. 275–288.

[55] Timos K Sellis. 1988. Multiple-query optimization. ACM Transactions on Data-

base Systems (TODS) 13, 1 (1988), 23–52.
[56] Sangeetha Seshadri, Vibhore Kumar, and Brian F Cooper. 2006. Optimizing mul-

tiple queries in distributed data stream systems. In Data Engineering Workshops,

2006. Proceedings. 22nd International Conference on. IEEE, 25–25.
[57] Sangeetha Seshadri, Vibhore Kumar, Brian F Cooper, and Ling Liu. 2007. Opti-

mizing multiple distributed stream queries using hierarchical network partitions.
In Parallel and Distributed Processing Symposium, 2007. IPDPS 2007. IEEE In-

ternational. IEEE, 1–10.
[58] Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka,

Ning Zhang, Suresh Antony, Hao Liu, and Raghotham Murthy. 2010. Hive-a
petabyte scale data warehouse using hadoop. In Data Engineering (ICDE), 2010

IEEE 26th International Conference on. IEEE, 996–1005.
[59] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M

Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Don-
ham, et al. 2014. Storm@ twitter. In Proceedings of the 2014 ACM SIGMOD

international conference on Management of data. ACM, 147–156.
[60] Shivaram Venkataraman, Aurojit Panda, Kay Ousterhout, Michael Armbrust, Ali

Ghodsi, Michael J Franklin, Benjamin Recht, and Ion Stoica. 2017. Drizzle: Fast
and adaptable stream processing at scale. In Proceedings of the 26th Symposium

on Operating Systems Principles. ACM, 374–389.
[61] Raajay Viswanathan, Ganesh Ananthanarayanan, and Aditya Akella. 2016.

CLARINET: WAN-Aware Optimization for Analytics Queries.. In OSDI. 435–
450.

[62] Ashish Vulimiri, Carlo Curino, Philip Brighten Godfrey, Thomas Jungblut, Jitu
Padhye, and George Varghese. 2015. Global Analytics in the Face of Bandwidth
and Regulatory Constraints.. In NSDI. 323–336.

[63] Guoping Wang and Chee-Yong Chan. 2013. Multi-query optimization in mapre-
duce framework. Proceedings of the VLDB Endowment 7, 3 (2013), 145–156.

[64] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Harsha V
Madhyastha. 2013. Spanstore: Cost-effective geo-replicated storage spanning
multiple cloud services. In Proceedings of the Twenty-Fourth ACM Symposium

on Operating Systems Principles. ACM, 292–308.
[65] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,

Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012.
Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems

Design and Implementation. USENIX Association, 2–2.
[66] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and

Ion Stoica. 2013. Discretized streams: Fault-tolerant streaming computation at
scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating Sys-

tems Principles. ACM, 423–438.
[67] Jingren Zhou, Per-Ake Larson, Johann-Christoph Freytag, and Wolfgang Lehner.

2007. Efficient exploitation of similar subexpressions for query processing. In
Proceedings of the 2007 ACM SIGMOD international conference on Manage-

ment of data. ACM, 533–544.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Wide-Area Streaming Analytics
	2.2 Benefits of Multi-Query Optimization in A Wide-Area Environment

	3 Sana: System Architecture
	4 Multi-Query Optimization
	4.1 Sharing Opportunities
	4.2 Sharing Across Multiple Queries

	5 WAN-Aware Optimization
	5.1 WAN-Aware Query Planning
	5.2 WAN-Aware Operator Scheduling

	6 Implementation
	7 Evaluation
	7.1 Baseline System Comparison
	7.2 Impact of Degree of Sharing
	7.3 WAN-Aware Execution Sharing: Bandwidth Utilization vs. Performance Trade-Off
	7.4 Potential Bandwidth Saving

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

