
Multi-Tenant Geo-Distributed Data Analytics

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Albert Jonathan

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Abhishek Chandra and Jon B Weissman

July, 2019

c© Albert Jonathan 2019

ALL RIGHTS RESERVED

Acknowledgements

There are many people that have earned my gratitude for their contribution to my

time in graduate school. First of all, I would like to thank my doctoral advisers, Prof.

Abhishek Chandra and Prof. Jon Weissman, for their guidance and support over the last

five years. They introduced me to research as an undergraduate student and patiently

taught me how to think critically, approach a problem, and improve my communication

skill. Such invaluable lessons will be very helpful on my future career.

Besides my advisers, I would also like to thank Prof. Zhi-Li Zhang, Prof. Marc

Riedel, Prof. Tian He, and Prof. David Lilja for serving as my thesis and preliminary

examination committees and providing constructive feedback throughout my degree

progress. I am also grateful to Prof. Mohamed Mokbel who supported and encouraged

me to pursue a doctoral degree.

I would also like to thank my friends and colleagues at the University of Minnesota

and members of Distributed Computing Systems Group. In particular, I am grateful

to Benjamin Heintz, Kwangsung Oh, Francis Liu, and Rankyung Hong for making the

lab a family-like working environment. A special thank you to Ben, Kwangsung, and

Francis who welcomed me when I first joined the lab and guided me to research.

Finally and most importantly, I would like to thank my family. I am extremely

grateful to my parents, Sandford Jonathan and Sutini Setiadi, for their unconditional

love, faith, support, and sacrifice. I will forever be indebted to them. I am also genuinely

thankful to my brothers, Christopher Jonathan and Alvin Jonathan, who have always

been very supportive. I will always cherish the memories I made with them in pursuing

our Ph.D. careers together. Everything that I have achieved in life would have been

impossible without my family.

i

Dedication

To my beloved family.

ii

Abstract

Geo-distributed data analytics has gained much interest in recent years due to the need

for extracting insights from geo-distributed data. Traditionally, data analytics has been

done within a cluster/data center environment. However, analyzing geo-distributed data

using existing cluster-based systems typically cannot satisfy the timeliness requirement

of most applications and result in wasteful resource consumption due to the fundamental

differences of the environments, especially due to the scarce, highly heterogeneous, and

dynamic nature of the wide-area resources: compute power and network bandwidth.

This thesis addresses the challenges faced by geo-distributed data analytics systems

in ensuring high-performance and reliable execution of multiple data analytics appli-

cations/queries. Specifically, the focus is on sharing resources across multiple users,

applications, and computing frameworks. Sharing resources is attractive as it increases

resource utilization and reduces operational cost. However, ensuring high-performance

execution of multiple applications in a shared environment is challenging as they may

compete for the same resources, especially in a wide-area environment with scarce re-

sources. Furthermore, dynamics such as workload variation, resource variation, strag-

glers, and failures are inevitable in large-scale distributed systems. These can cause large

resource perturbation that significantly affect the performance of query executions.

This thesis makes the following contributions. First, we present a resource sharing

technique across multiple geo-distributed data analytics frameworks. The main chal-

lenge here is how to elastically partition resources while allowing high locality schedul-

ing to each individual framework, which is critical to the execution performance of

geo-distributed analytics queries. We then address the problem of how to identify and

exploit common executions across multiple queries to mitigate wasteful resource con-

sumption. We demonstrate that traditional multi-query optimization may degrade the

overall query execution performance due to its lack of support for network awareness.

Finally, we highlight the importance of adaptability in ensuring reliable query execution

in the presence of dynamics, both for single and multiple query executions. We propose

a systematic approach that can selectively determine which queries to adapt and how

to adapt them based on the types of queries, dynamics, and optimization goals.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Challenges in Geo-Distributed Data Analytics 2

1.2 Thesis Contributions and Outline . 4

2 Resource Sharing in Geo-Distributed Edge Cloud 6

2.1 Introduction . 6

2.2 Problem Context . 8

2.2.1 Application/Query Model . 8

2.2.2 Edge Cloud System Model . 9

2.3 Awan: Geo-Distributed Resource Manager 11

2.3.1 Limitations of Existing Cluster Resource Managers 11

2.3.2 Awan Resource Manager . 13

2.3.3 Resource Lease . 14

2.3.4 Lease Estimation and Enforcement 16

2.4 Locality-based Priority Scheduling . 18

iv

2.5 Experimental Evaluation . 20

2.5.1 Leased-based Resource Sharing 21

2.5.2 Lease Estimation . 22

2.5.3 Locality-based Priority Scheduling 23

2.6 Related Work . 24

2.7 Conclusion . 25

3 Multi-Query Optimization in Wide-Area Streaming Analytics 26

3.1 Introduction . 26

3.2 Background and Motivation . 29

3.2.1 Wide-Area Streaming Analytics 29

3.2.2 Benefits of Multi-Query Optimization in Wide-Area Settings . . 30

3.3 Sana: System Architecture . 34

3.4 Multi-Query Optimization . 35

3.4.1 Sharing Opportunities . 35

3.4.2 Sharing Across Multiple Queries 37

3.5 WAN-Aware Optimization . 39

3.5.1 WAN-Aware Query Planning . 39

3.5.2 WAN-Aware Operator Scheduling 41

3.6 Implementation . 43

3.7 Experimental Evaluation . 45

3.7.1 Baseline System Comparison . 47

3.7.2 Impact of Degree of Sharing . 49

3.7.3 WAN-Aware Sharing: Bandwidth Utilization vs. Performance . . 51

3.7.4 Potential Bandwidth Saving . 52

3.8 Related Work . 53

3.9 Conclusion . 56

4 WASP: Wide-area Adaptive Stream Processing 57

4.1 Introduction . 57

4.2 Background & Motivation . 59

4.2.1 Wide-area Streaming Systems . 59

4.2.2 Wide-area Resource Constraints 61

v

4.3 WASP Overview . 62

4.4 Query Execution Model & Monitoring 63

4.5 Optimization-Based Adaptation . 65

4.5.1 Task Re-Assignment . 65

4.5.2 Operator Scaling . 67

4.5.3 Query Re-Planning . 69

4.6 WASP’s Adaptation Policy . 71

4.6.1 Adaptability Technique Comparison 71

4.6.2 Determining Factors . 72

4.7 Discussion & Assumptions . 74

4.8 Implementation . 75

4.9 Experimental Evaluation . 75

4.9.1 Methodology . 76

4.9.2 Adapting to Wide-area Dynamics 78

4.9.3 Re-Assign vs. Scale vs. Re-Plan 80

4.9.4 WASP in a Live Environment . 81

4.9.5 Mitigating Adaptation Overhead 83

4.10 Related Work . 86

4.11 Conclusion . 87

5 Multi-Query Adaptation in Wide-Area Streaming Systems 88

5.1 Introduction . 88

5.2 Motivation . 90

5.3 Adaptation Cost . 92

5.3.1 Resource Consumption Cost . 93

5.3.2 Overhead Cost . 94

5.4 Multiple Query Adaptation . 95

5.4.1 Adaptation Flow . 95

5.4.2 Adapting Shared Execution . 97

5.5 Experimental Evaluation . 100

5.5.1 SLO vs. Cost-based Adaptation 101

5.5.2 Resource Consumption vs. Overhead Trade-off 104

vi

5.5.3 Shared Query Adaptation . 105

5.6 Related Work . 107

5.7 Conclusion . 108

6 Future Research Directions 109

6.1 Machine Learning for Data Analytics Systems 109

6.2 Pushing Data Analytics Further to the Edge 110

7 Conclusion 112

vii

List of Tables

3.1 Sana query details . 46

3.2 Geo-distributed data analytics systems 54

4.1 Descriptions of the used notations . 63

4.2 Qualitative comparison between different adaptation techniques. 72

4.3 WASP query details. 77

5.1 Nako query details. 101

viii

List of Figures

1.1 Centralized vs. decentralized processing model of geo-distributed data. . 3

2.1 Query execution and Edge Cloud system model 9

2.2 Awan two-level resource sharing model. 14

2.3 Benefit of lease-based resource sharing technique. 21

2.4 Lease estimation. 22

2.5 Effects of varying the minimum locality threshold. 24

3.1 Logical execution plans of Query 1 and Query 2. 32

3.2 Execution sharing between Query 1 and Query 2. 33

3.3 Sana system architecture. 34

3.4 IN-OP: Input-Operator Sharing. Here, v1 and v2 share common input

streams and operators, but only partially share the output streams. . . . 36

3.5 IN: Input Sharing. v1 and v2 only partially share common input streams. 37

3.6 Cross-query execution sharing: C shares its execution with A and B. . . 38

3.7 Sharing opportunities: v exhibits IN-OP with v2, and IN with v1 and v3. 40

3.8 Overall system performance comparison. 47

3.9 Per-query execution throughput. 48

3.10 Per-query WAN bandwidth consumption. 48

3.11 Per-query execution latency. 49

3.12 Degree of sharing impact over different number of concurrent queries. . 50

3.13 Degree of sharing impact over different input stream rate. 51

3.14 WAN-aware planning: bandwidth utilization vs. performance trade-off. 52

3.15 Saving WAN bandwidth consumption. 53

4.1 Wide-area query execution pipeline. 60

4.2 WAN bandwidth variability from Oregon to Ohio EC2 data centers. . . 61

ix

4.3 System overview of WASP. 62

4.4 Scaling up/out operator within and across sites. 68

4.5 Different query execution plans result in different deployments. 70

4.6 Determining which adaptability action. 73

4.7 Inter-site network distribution. Edge connections only consider nearby

sites. 76

4.8 YSB execution under workload and bandwidth dynamics. 78

4.9 Top-K execution under workload and bandwidth dynamics. 78

4.10 Event Interest execution under workload and bandwidth dynamics. . . . 79

4.11 Comparison between the 3 techniques in handling dynamics individually. 81

4.12 WASP’s adaptations to dynamics and failures. 82

4.13 Quality vs. delay trade-offs. 83

4.14 Network-aware state migration. 84

4.15 Mitigating overhead through operator scaling and state partitioning. . . 85

5.1 Initial deployment and workload of Query 1, 2, and 3. 90

5.2 Different adaptations result in different network consumption and overhead. 91

5.3 Different adaptation actions may result in different resource consumption. 93

5.4 Nako’s adaptation flows. 96

5.5 Bottlenecks on a shared query execution. 98

5.6 Per query execution delay over time. 102

5.7 Per query delay and constrained time comparison between Nako and SLO.103

5.8 Overhead vs WAN bandwidth consumption trade-off. 105

5.9 Adapting/splitting shared execution over different combination of state

size. 106

x

Chapter 1

Introduction

Recent years have seen an increasing amount of data that are naturally born geo-

distributed. This results from the way people rely on the Internet in their daily ac-

tivities such as communicating with others through social networks, spending time en-

joying online entertainment, and accessing information and news through online media.

For example, Facebook reported that more than one billion people around the world

actively interact with their friends and upload millions of photos and videos on a daily

basis [?]. Studies have also reported that Twitter’s users are actively generating an av-

erage of 500 million tweets per day and they rely on Twitter feeds to learn what events

are happening around the world in real time [?]. Meanwhile, millions of people spend

more than 100 million hours watching videos from Netflix [?]. These global activities

have resulted in a vast amount of data continuously being generated around the globe.

To provide low-latency service delivery to end-users, many organizations such as

Google, Facebook, Microsoft, Amazon, and Netflix deploy their services over tens

of data centers and hundreds of edge infrastructures that are distributed around the

globe [?, ?, ?, ?, ?]. Each site (edge cluster or data center) stores the information pro-

duced/consumed by co-located users (e.g., photos, videos, status updates) while in turn

generates additional information (e.g., system and user-access logs). Collectively ana-

lyzing these geo-distributed data is critical for many business and operational tasks. For

example, Twitter data are often analyzed to detect emergency events in real time [?, ?].

Public services are monitoring live video streams from thousands of cameras installed

all over a city for traffic control and surveillance purposes [?, ?]. Similarly, video stream

1

2

providers continuously analyze their user-access logs from their Content Delivery Net-

work (CDN) servers for better user-experience, marketing, and billing [?, ?]. Since

many of these analytics applications rely on timely information, achieving low-latency

analysis is crucial.

1.1 Challenges in Geo-Distributed Data Analytics

Traditionally, data analytics has been done in a centralized manner within a cluster or

data center, comprising large number of computing machines that are connected by a

high-speed network. Several data analytics/computing frameworks and research proto-

types have been developed for this environment for batch-oriented processing [?, ?, ?],

stream-oriented processing [?, ?, ?, ?], and graph processing [?, ?, ?]. However, using

these cluster-based computing frameworks to collectively analyze geo-distributed data

is not trivial. For example, most data analytics frameworks assume that all input data

and computing machines are co-located within the same site and any data communica-

tion among the machines is done over a high-speed local-area network (LAN). However,

such an assumption is invalid for geo-distributed data processing as the data may not be

co-located with the compute cluster and transmitting geo-distributed data to a central-

ized compute cluster is done over a relatively low-bandwidth, high-latency, and highly

heterogeneous wide-area network (WAN).

One possible approach to analyze geo-distributed data is to first send all the data

into a single rendezvous cluster, and process them all together using an existing cluster-

based data analytics framework. We refer to this approach as a centralized processing

model (Figure 1.1(a)). Unfortunately, transmitting a large amount of data over the

WAN typically incurs very high transmission delay due to the scarce WAN bandwidth.

Studies have shown that today’s wide-area network bandwidth is significantly lower than

the local-area network bandwidth by several orders of magnitude [?, ?]. Furthermore,

the public Internet that is often used by private Clouds and edge infrastructures has

even more constrained bandwidth, with an average of less than 10Mbps [?, ?]. Thus,

the centralized processing model typically limits the timeliness of the results and hence,

is not practical for many data analytics applications [?, ?, ?, ?, ?].

3

To address the limitation of the centralized approach, recent work has proposed an al-

ternative processing model called geo-distributed analytics (GDA). This model processes

geo-distributed data in a geo-distributed fashion by utilizing computing resources/nodes

that are located close1 to the data (Figure 1.1(b)) [?, ?, ?, ?, ?]. Data analytics systems

that adopt the GDA processing model treat all geo-distributed nodes to form a single

logical data center, but account for the limitation and heterogeneity of the resources.

Such a decentralized processing model can significantly improve the timeliness of the

analysis and mitigate wasteful resource consumption by pre-processing geo-distributed

data in-place and reducing the total amount of data that need to be sent over the WAN

for final processing [?, ?, ?, ?, ?].

(a) Centralized approach. (b) Decentralized (geo-distributed) approach.

Figure 1.1: Centralized vs. decentralized processing model of geo-distributed data.

Most of the work in GDA has focused on incorporating WAN awareness in scheduling

different types of data analytics jobs in wide-area settings, for batch analytics [?, ?, ?,

?, ?, ?], streaming analytics [?, ?, ?, ?, ?, ?], or graph analytics [?, ?]. The main

challenge here is due to the scarce, highly heterogeneous, and dynamic nature of the

wide-area resources. Thus, many data analytics applications are often constrained by

the limitations of the wide-area resources in achieving their desired requirements. For

example, most streaming analytics queries require low-latency and high-throughput

processing but wide-area network incurs high network delay and has low bandwidth.

Similarly, long-running queries require stable and high-performance processing, but they

are often challenged by the high variation of wide-area network bandwidth. These

1 The distance is often measured based on the network bandwidth availability between two sites
instead of the actual geographic distance.

4

unique characteristics of wide-area resources are not taken into account by existing

cluster-based data analytics systems. Thus, optimizing existing data analytics systems

to wide-area settings requires rethinking some of their designs.

This thesis addresses the challenges faced by geo-distributed data analytics systems

in ensuring a high-performance and reliable execution of multiple data analytics appli-

cations/queries2 . Specifically, the focus is on sharing resources across multiple users,

applications, and computing frameworks. Sharing resources across multiple applica-

tions is attractive as it reduces the ownership and operational cost of a cluster and it

improves resource utilization by allowing applications to elastically scale their resource

needs based on their workload. Yet, ensuring high-performance and reliable execution

of multiple queries in a shared environment is challenging as they may compete for the

same resources, especially in a wide-area environment with limited resources. Further-

more, runtime dynamics such as unpredictable workload pattern, network bandwidth

variation, continuous job arrivals/completions, occurrence of stragglers, and failures are

inevitable in large-scale distributed systems. In a resource-constrained environment,

such dynamics can cause large resource perturbation that significantly affect the overall

execution performance of queries.

1.2 Thesis Contributions and Outline

To address the above challenges faced by geo-distributed data analytics systems, this

thesis answers the following research questions: (1) How to schedule batch and streaming

analytics jobs in a wide-area environment? (2) How to share wide-area resources across

multiple data analytics frameworks? (3) How to optimize multiple query executions to

mitigate any wasteful resource utilization? and (4) How to adapt query executions in

the presence of dynamics? We summarize the contributions and the organization of the

remainder of this thesis as follows:

• Chapter 2 addresses the problem of resource sharing across multiple batch ana-

lytics frameworks in a wide-area environment. We propose a lease-based resource

sharing technique and a variant of a delay scheduling that allow each framework

to schedule its jobs with high locality.

2 A query refers to a processing model of an application.

5

• Chapter 3 explores the opportunity of incorporating multi-query optimization in

the context of wide-area streaming analytics. Specifically, we look at the oppor-

tunity of sharing common executions across multiple queries to eliminate any

redundant data processing and transmission over the wide-area network. We

further highlight the importance of network awareness in applying multi-query

optimization in a wide-area environment. We show that traditional multi-query

optimization may degrade the overall query execution performance due to its lack

support for network awareness.

• Chapter 4 addresses the importance of adaptability for long-running streaming

analytics queries in maintaining their execution performance regardless of dy-

namics. We study several adaptation techniques, extend them to handle various

wide-area dynamics, and propose a systematic approach that can automatically

determine which adaptation action to take depending on the types of queries, dy-

namics, and optimization goals. We show that the proposed adaptation technique

can handle various dynamics with low overhead and without compromising the

accuracy/quality of the results.

• Chapter 5 further extends the proposed adaptation technique to a multi-query

environment where multiple queries may be constrained and competing for com-

mon resources. We propose a notion of adaptation cost that considers both the

overhead and the resource consumption cost of adapting a query, and use this

adaptation cost metric to determine which queries that need to be adapted as

well as how to adapt them. The proposed adaptation technique results in a more

efficient adaptation that improves the overall performance and stability of multiple

query executions.

• Chapter 6 presents the future research directions.

• Lastly, Chapter 7 highlights the key contributions of the thesis.

Chapter 2

Resource Sharing in

Geo-Distributed Edge Cloud

2.1 Introduction

Many Cloud providers such Amazon, Google, and Microsoft operate and deploy their

services over tens of data centers and hundreds of edge servers around the globe to

provide low-latency service delivery to their end-users [?, ?, ?]. These services in turn

continuously generate large amounts of data across multiple sites/locations. Collectively

analyzing these geo-distributed data is crucial for many operational tasks. For example,

analyzing user-access logs from multiple geo-distributed CDN servers provides insights

on the popularity of a specific event across different countries, which can be further

used for advertisement purpose. Another example includes analyzing system logs to

find common security threats across multiple edge servers.

Most data analytics systems have been primarily designed to run within a cluster or

data center. However, such a centralized platform is not well suited for geo-distributed

data analytics applications/queries since it requires sending all the data into the cluster

before starting the analysis. This geo-distributed data transmission over the wide-area

network (WAN) typically results in high overhead due to the bandwidth limitation

of the network. Thus, such an approach typically limits the execution performance of

geo-distributed data analytics queries. To address the limitations of the centralized pro-

cessing model, recent work has proposed a decentralized processing model that processes

6

7

geo-distributed in a geo-distributed fashion using computing machines that are located

at the edge of the network. Such a platform is often called an Edge Cloud [?, ?, ?].

Edge Cloud can improve the execution performance of analyzing geo-distributed data

by utilizing co-located computing resources.

Data-intensive applications are diverse in terms of their characteristics, require-

ments, and processing model and hence, they require different execution models to pro-

cess the data efficiently. This has led to recent developments of a number of distributed

data analytics frameworks/systems such as MapReduce [?], Dryad [?], Pregel [?], and

others [?, ?, ?]. Since most of the frameworks have been designed for a cluster/data

center environment, recent attempts have looked at the opportunity and challenges of

adapting and optimizing them to a geo-distributed environment for geo-distributed data

analytics queries [?, ?, ?, ?]. We believe that the increasing trend of geo-distributed

data will trigger more computing frameworks to be developed or adapted to a wide-area

environment. Yet, this imposes new challenges in sharing the resources across multiple

data analytics frameworks in a wide-area environment.

In general, resource sharing provides hardware cost benefits and improves resource

utilization as it allows each framework to elastically adapt its resource share based on

its workload. Although the problem of resource sharing across multiple frameworks has

been extensively studied in a large cluster/data center environment [?, ?, ?, ?], existing

cluster-based resource sharing techniques do not scale well to a wide-area environment

due to the fundamental differences between the two environments. In particular, they

lack the support for network awareness that is critical to achieving high-performance

query execution in geo-distributed settings.

To address the challenges of sharing resources across multiple geo-distributed data

analytics frameworks, we introduce Awan 1 - a resource management system for geo-

distributed Edge Clouds. The main goal of Awan is to provide a generic resource sharing

mechanism that allows each data analytics framework to schedule and deploy its jobs

with high locality, which is crucial to the overall query execution performance of geo-

distributed data analytics queries. Awan achieves this goal by implementing a resource

lease abstraction, which defines a set of computing resources that have been allocated to

a specific framework for a specific amount of time. A lease provides a guarantee on the

1 Awan is an Indonesian word of ”Cloud”.

8

duration for which resources will be held by a particular framework. Awan shares every

lease information to all frameworks, enabling them to make better scheduling decisions

by considering the future availability of all of the computing resources. We further

propose a locality-based priority scheduling algorithm based off a delay scheduling al-

gorithm that allows framework schedulers to prioritize high-locality jobs in scheduling

multiple data analytics jobs.

Our experimental evaluation with the Nebula Edge Cloud [?] on a real geo-distributed

system deployment using PlanetLab [?] shows that Awan outperforms existing resource

sharing techniques for geo-distributed data-intensive applications. Specifically, it in-

creases the number of tasks that can be scheduled locally by each framework by ap-

proximately 28%. This locality improvement results in a reduction of the overall job

execution time by approximately 18%. The use of delay scheduling algorithm further

improves the locality, which results in a decrease in the average job turnaround time by

an additional 13%.

2.2 Problem Context

In this section, we describe the application model and the Edge Cloud system model

that we consider throughout the chapter.

2.2.1 Application/Query Model

We consider batch-oriented data analytics applications/queries whose inputs are dis-

tributed across multiple locations. Figure 2.1(a) shows an example of the query execu-

tion model. Each application that is submitted to the system needs to specify its input

dataset, its processing model, and the final output location. Here, the processing model

of an application corresponds to which execution framework the application will be

scheduled by (will be discussed in Section 2.2.2). For example, an analyst may submit

a WordCount application to a MapReduce [?] framework to find errors from multiple

geo-distributed log files.

In general, an application/query, Q, consists of one or more execution stages (jobs),

Q = {J1, . . . , Jn} where n > 1, and a job may have dependencies with other jobs. For

example, a MapReduce application consists of 2 jobs: Map job and Reduce job, and

9

(a) Application/query execution model. (b) Edge Cloud system model.

Figure 2.1: Query execution and Edge Cloud system model

the Reduce job depends on the execution of the Map job, as its inputs are generated

by the Map job. A job can start its execution only after all of its dependency jobs

have completed their executions. A job Ji can be further broken down into multiple

execution instances (tasks) that can run in parallel: Ji = {Ti,1, . . . , Ti,p}, where p is the

parallelism of the job. The parallelism value of a job is typically determined based on

its input workload. A query execution is considered complete/finish when all of its jobs

have completed, while a job is considered complete when all of its tasks have completed.

2.2.2 Edge Cloud System Model

Figure 2.1(b) depicts the Edge Cloud system model that we consider: it consists of

several components that are deployed in a reliable/dedicated server and multiple storage

and compute nodes that are geo-distributed. Both the storage and compute nodes can be

shared by multiple applications. A node in our environment may perform as a compute

node, storage node or both. A compute node consists of one or more computing slots,

which is the smallest granularity of a computing resource that can be assigned to exactly

one task at a time. In this work, we consider all slots to be homogeneous (e.g., a slot

corresponds to 1 CPU and 1GB memory). However, the number of computing slots

across nodes may vary depending on the computing power of each node itself. When

a task is deployed to a particular computing slot, it will first download all of its input

dataset, process them, and store the final result to one or more storage nodes.

10

We assume that the Edge Cloud consists of following modules:

• Storage Master. Throughout the discussion, we consider a file as the smallest

granularity of an input data shard of a particular task. All files that are stored in

the system are managed by the Storage Master. It is responsible for (1) maintain-

ing all files’ metadata, (2) ensuring the availability of all files by determining the

replication factor of each file, and (3) determining where each file and its replicas

should be stored [?].

• WAN Monitor. The WAN Monitor is responsible for monitoring the end-to-

end network bandwidth availability (both uplink and downlink) between nodes.

This bandwidth information is used to determine the network bandwidth distance

between nodes, which is used by the Storage Master to determine where each file

should be stored, and by each Data Analytics Framework’s scheduler to schedule

its jobs with network awareness. In this work, we consider a compute node to be

local to a storage node if they share the same physical machine or the network

bandwidth between them is higher than a specific bandwidth threshold.

• Data Analytics Framework. A Data Analytics Framework (or framework for

short) consists of a scheduler that is responsible for (1) scheduling and deploying

any submitted job, and (2) monitoring the execution state of all of its jobs. Each

submitted job will put into a job queue and the scheduler will schedule the jobs

(i.e., job whose dependencies have been resolved) based on their priorities on a

per-job basis. Specifically, the scheduler will determine where each task of the

job should be deployed. Different frameworks in the system may have different

scheduling policies. For example, a framework may schedule its jobs with the goal

of minimizing the overall job execution runtime, while another framework may

schedule its jobs with the goal of minimizing WAN bandwidth consumption. In

the former case, the scheduler will attempt to schedule its jobs with high locality

because data transmission over WAN is usually the dominant factor to the overall

query execution time. In this case, locality can be achieved by scheduling a task on

a compute slot that is closest to its inputs’ locations. We refer to this scheduling

technique as locality scheduling.

11

• Resource Manager. Since different analysts may want to run a different types

of applications, the resources in an Edge Cloud is typically shared by multiple

frameworks. The main goal of the Resource Manager is to provide a resource

sharing mechanism and policies across multiple computing frameworks. It keeps

track of the availability of all computing slots (e.g., vacant or has been allocated

to a particular framework) and may allocate any of the available slots to any

of the frameworks. For clarity reason, we assume that a slot can only be allo-

cated to exactly one framework at a time. Note that a system may not have a

Resource Manager, in which case each framework will compete for the resources di-

rectly [?]. However, such a resource sharing mechanism introduces new challenges

in coordinating and enforcing any global resource sharing policy across multiple

frameworks.

2.3 Awan: Geo-Distributed Resource Manager

There have been several resource management systems developed to share computing

resources among multiple frameworks in a cluster/data center environment [?, ?, ?, ?].

However, they do not account for the network bandwidth limitation and heterogeneity

between the nodes in the system since they are primarily designed for a relatively

homogeneous environment. In this section, we first identify and highlight some of the

limitations of existing cluster-based resource management techniques when they are

deployed in wide-area settings, and then present Awan: a resource sharing technique

that we have designed specifically for a geo-distributed environment.

2.3.1 Limitations of Existing Cluster Resource Managers

One possible approach to share resources across multiple frameworks is to use a Mono-

lithic Scheduler: a global resource scheduler that determines how to allocate resources

to each framework. Such a scheduler typically implements a generic scheduling policy

(e.g., fair sharing) that can be used by various types of frameworks. Although a Mono-

lithic Scheduler generally simplifies the resource sharing problem, such a scheduler is

often difficult to extend with new framework-specific policies and optimization.

12

In order to optimize the execution deployment of various data analytics applica-

tions, researchers have implemented multiple data analytics frameworks with different

scheduling policies, each of which is optimized for a specific type of applications. How-

ever, sharing limited number of resources across different frameworks introduces new

challenges such as (1) How to partition the resources across frameworks? (2) How to

handle concurrency issues among frameworks? and (3) How to prioritize certain jobs

from different frameworks? One possible approach would be to statically partition the

resources in advance and allocate each framework a predetermined share of resources.

We refer to this approach as a static resource partitioning. The main drawback of stat-

ically partitioning the resources is that it leads to an external resource fragmentation

problem, resulting in a low cluster resource utilization. Determining the size of each

partition in advance may also be difficult since each framework may have a dynamic

and unpredictable workload that changes over time. Moreover, a static partitioning

approach is not suitable for a geo-distributed environment since it typically limits the

locality scheduling of each framework.

Dynamic resource partitioning solves the external fragmentation problem by elasti-

cally adapting the resource share of each framework based on their workloads. There

are several dynamic resource partitioning techniques that have been proposed to share

computing resources in a cluster environment. The first type is a two-level scheduling.

It consists of a single logical Resource Manager that performs as an abstraction layer be-

tween the resources and the frameworks. Each framework interacts with the Resource

Manager in order to acquire resources. Mesos [?] is a popular resource management

system that uses a two-level scheduling approach. In Mesos, all frameworks acquire

resources from the Mesos Resource Manager using a resource offer mechanism. In this

model, each framework would request for the availability of the resources from the Re-

source Manager whenever there is a job that needs to be scheduled. Upon receiving

this request, the Resource Manager would offer a set of the available resources based on

its resource partitioning policy. In return, a framework may either accept or reject the

offer if the offered resources do not adequately satisfy the requirements.

The resource offer mechanism uses a pessimistic concurrency control, meaning that

the resources that are currently offered to one framework will not be offered to the other

frameworks at the same time. This ensures no conflict between frameworks in allocating

13

resources. The drawback of the pessimistic approach is that only one framework can

acquire a particular set of resources at a time. Thus, other frameworks may have to

wait for a long time for the Resource Manager to offer the desired resources to them.

An alternative approach would have the Resource Manager perform global resource

allocation for all the requests from the frameworks, similar to the approach used in

YARN [?]. This, however, makes the two-level architecture effectively monolithic since

the resource allocation is determined by a single global resource allocator.

A shared-state model that was introduced in Google Omega [?] removes the role of

the Resource Manager. In this case, each framework can directly schedule its tasks on

any of the available resources. In this resource sharing model, the state of all resources

are shared by all of the frameworks and they can schedule their tasks in parallel using an

optimistic concurrency control. This mechanism gives all of the frameworks knowledge

about the state of each of the resources (i.e., available or unavailable). This knowledge,

however, is only used to avoid a framework trying to acquire resources are currently

being used by other frameworks. While the shared-state model is useful in a cooperative

environment, using it in an Edge Cloud with limited number of resources may lead to

significant issues such as fairness and starvation because multiple frameworks may be

competitive and try to hoard resources. Furthermore, since a shared-state model does

not have a coordinator that controls the resource shares among frameworks, enforcing

global policies across frameworks (e.g., fair sharing across frameworks) is not trivial.

2.3.2 Awan Resource Manager

To address the limitations of the existing cluster-based resource managers in an Edge

Cloud environment, we propose a new resource manager called Awan. The goal of Awan is

to provide a scalable resource sharing mechanism in a geo-distributed environment that

allows each framework to achieve high locality scheduling that is critical to achieving

high-performance execution of geo-distributed analytics queries. Awan combines the

desirable features of the two-level model with those of the shared-state model, while

providing explicit support for locality-aware scheduling. Figure 2.2 shows the two-level

model of Awan. We incorporate the shared-state mechanism by sharing the states of all

the resources to all the frameworks. In our system the states of the resources are shared

by the Resource Manager and not directly by the frameworks.

14

Figure 2.2: Awan two-level resource sharing model.

Awan Resource Manager provides the states of all resources to all frameworks, in-

cluding those that are not currently available or have been allocated to a particular

framework. Each framework acquires and schedules its tasks to the available resources

using a resource lease mechanism with an optimistic concurrency control. However, the

optimistic concurrency control in acquiring resources is coordinated by the Resource

Manager. In this case, a framework will first lease a set of resources for a specific

amount of time to the Resource Manager before deploying its tasks (the leasing mech-

anism will be discussed in Section 2.3.3). To handle conflicting resource acquisition,

the resource allocation will be done in an atomic manner. The Resource Manager can

also enforce any global policy that has to be obeyed by the frameworks. For example,

the Resource Manager may implement a fair sharing policy by limiting the number of

resources that can be acquired by a framework.

2.3.3 Resource Lease

In a geo-distributed environment, the resource offer mechanism that is used by Mesos

suffers from the potential lack of locality in task scheduling. The main reason is due

to the limited knowledge of the resource availability that is provided by the Resource

Manager, since the resource offer mechanism only offers currently available resources.

At a glance, offering only the available resources seems reasonable because tasks can

only be deployed on computing slots that are available. An unavailable slot, however,

15

may actually provide better data locality for a task than any of the available slots when

it becomes available in the future. Mesos handles this issue by incorporating a delay

scheduling [?] for short running tasks which makes a scheduler delay scheduling a job

if its task cannot be launched locally. However, delay scheduling a job without any

knowledge of the future availability of the resources, especially if most of the tasks are

long-running, may introduce unnecessary waiting time. Instead, it would be desirable

for a scheduler to wait (or not) on busy resources depending on the expected waiting

time. If the scheduler is aware that the local resources will be available soon, it may

decide to delay scheduling a certain job. On the other hand, if the waiting time is too

long, the scheduler may decide to deploy its tasks on any of the available slots. Thus,

sharing the future availability information of unavailable resources can help a scheduler

make a better scheduling decision.

A lease in the resource lease mechanism has a lease expiration time associated with

it which provides a guarantee that the acquired resources will be held by a framework

for no longer than the lease time (with a possibility of some grace period). After the

lease time expiry, the Resource Manager will make the resource available to the other

frameworks. Sharing the lease expiration time enables framework schedulers to estimate

their waiting time for desired busy resources, leading to improved scheduling decisions.

When a framework tries to acquire a set of available resources R1, . . . , Rn, the sched-

uler sends a lease request < L1, . . . , Ln > to the Resource Manager. Here, Li is the lease

time on resource Ri. If the Resource Manager agrees on the request and the resources

are available, the resources will be allocated to the framework and the resources will be

marked unavailable for other frameworks. A lease request may also contain an atomic

request flag specifying that all resources must be acquired atomically. If the flag is set,

the request will be granted iff all the leases can be satisfied, i.e., all resources in the

request are available. Otherwise, the leases on available resources will be granted and

the scheduler will be notified if any of the leases failed. Failure in leasing may hap-

pen because of the optimistic concurrency control used in our resource management

mechanism, where multiple schedulers may try to acquire overlapping sets of available

resources at the same time. We provide such an atomic option because some frameworks

(e.g., MPI) require all resources to be available to start the execution, while others (e.g.,

MapReduce) can start a job partially and add more resources later.

16

The Resource Manager keeps track of the leases and share them to all of the frame-

works. Since each lease contains information about the future availability of a specific

resource, a scheduler may decide whether to schedule its tasks on the available resources

or wait for the busy resources. If a scheduler decides to wait on one or more resources,

the scheduler should be able to dynamically change its scheduling decision over time.

This is useful for a few reasons. First, the network bandwidth availability between nodes

is constantly changing over time, especially in a system that is connected via dynamic

WAN. Thus a scheduler may change its scheduling decision if the resource availability

has drastically changed. Second, stragglers and failures are inevitable in large-scale dis-

tributed systems. Thus, a scheduler should be able to re-evaluate its scheduling decision

if the resources it has been waiting for have failed. Third, the lease estimation that is

provided by other frameworks may not be perfectly accurate (in practice it is unlikely to

have a 100% prediction accuracy especially in a resource constrained environment that

may have large resource perturbation). If a computing slot becomes available sooner

than the estimated time, a framework should be be able to acquire the slot immediately.

Lastly, in an optimistic concurrency control, multiple frameworks may wait for the same

set of resources. Since only one framework is able to acquire the resources, the other

frameworks should be able to reschedule their tasks on different resources if they have

failed acquiring the desired resources. Here, a waiting list can be added to each resource

so that a framework may decide to ignore resources that have long waiting queues.

Our design uses a two-level model to allow global policies to be applied to every

framework easily. Some policies that have been incorporated in our implementation

are: (1) the capability of rejecting a lease request for an unreasonable long time and

(2) terminating a process/task that takes longer than the agreed lease time. If fairness

across frameworks is the main priority, fair sharing may also be applied by limiting the

number of resources that can be leased using max-min fair sharing.

2.3.4 Lease Estimation and Enforcement

When a framework tries to acquire a resource, it needs to estimate the time needed to

complete the task on that particular resource. The lease time in our implementation

is estimated by combining the data transmission time and task’s running time from its

statistical history. However, having a perfect accuracy in estimating the lease time is not

17

possible for many reasons. Public Internet is highly dynamic in practice, and networking

problems such as packet loss may also influence the data transfer time. Estimating the

network bandwidth between nodes interconnected via WAN is a challenging problem [?,

?]. In our implementation, the network cost estimation is best-effort and it is estimated

based on the time to transmit data over a network link. Although, the data transmission

time is typically the dominant factor of the total execution time for geo-distributed data-

intensive jobs, we also consider the computing factors into the lease calculation to have

a better lease estimation accuracy. These factors are estimated as a per-node compute

performance history of running similar tasks, which are maintained by each framework.

In general, the lease time of a slot of a particular node, La, is estimated as follow:

La = max
(|inputb|

Ba
b

)

+ C̄k

(

∑

inputb

)

+ δ,∀b

La is the estimated time needed to process a task on node located at site a. Ba
b is the

available network bandwidth between sites b and a, where b is the location of an input

data shard inputb. C̄k is the average task processing time of the latest kth tasks. The

number of records, k, is used to avoid including obsolete records into the calculation.

The similarity of the task can be categorized based on its computing model and its input

data size. If there is no similar task profile in the history, C̄k will be estimated from the

performance of running a similar task on a different node. If none of the nodes have

ever processed a similar task, the scheduler will lease a slot for a pre-defined amount of

time. This might cause a large inaccuracy in running a task for the first time. A small

slack factor, δ, is added to the estimation to avoid an overly optimistic prediction.

Both underestimation and overestimation of a lease time can lead to problems. If

the lease time is underestimated, i.e., the time needed to complete a task is longer than

the lease time, the task would not be completed before the lease expiration time. If

the Resource Manager terminates the task and revokes the expired slot, this will result

in wasted resources and increase the turnaround time of the job. The overall system

utilization and performance will deteriorate significantly with a high number of lease

underestimations. On the other hand, if the lease time for a slot is overestimated, fewer

schedulers may wait for this slot to become available, and may instead schedule their

tasks on less desirable non-local slots. With a high number of lease overestimation, most

schedulers will ignore the busy slots and schedule their tasks on any of the available

18

slots, effectively reducing to a resource offer-based mechanism. This may result in a low

number of local task executions and decrease the overall system performance.

The Resource Manager can also use different policies to handle expired leases. The

simplest approach is to terminate the running task upon lease expiry and set the slot to

be available to other frameworks. However, terminating a process that has not finished

on an expired lease requires the task to be rescheduled on a different slot, and will

result in wasted resources if the task is almost finished. A better approach is to give

some grace period for the node to clean up or finish. If the task is a long-running task

and the progress of the process is far from completion, the state of the task could be

saved and its temporary results should be stored to a storage node such that the task

can be continued by another slot instead of restarting the whole task. The Resource

Manager should carefully determine what is the appropriate grace period. If the grace

period is too low, it is likely to result in large number of terminated tasks. On the other

hand, if the grace period is too high, it may lead to much higher waiting times for other

frameworks waiting for the slot to become available.

2.4 Locality-based Priority Scheduling

Our discussion so far has focused on how to share resources between multiple frame-

works. In this section, we focus on improving locality in scheduling multiple jobs for a

batch analytics framework. A notable technique to improve locality in scheduling is by

using a delay scheduling algorithm [?], which would skip a job that is at the head of

the job queue if any of its tasks cannot be scheduled locally. To avoid starvation, the

scheduler can limit the number of times a job is skipped. Once the number of skips

reaches a predetermined threshold, the job will be scheduled even if its tasks cannot be

scheduled locally. This technique is feasible if most of the tasks are short-running where

a short delay is often sufficient to have a higher locality.

Introducing a delay in scheduling long running tasks, however, works well only if a

scheduler has a complete knowledge of the status of all task slots (including those that

are currently unavailable). If a scheduler is only aware of the slots that are available

(on which it can launch its tasks without any delay), delaying task placement may incur

unnecessary waiting time since it is possible that a task cannot be scheduled locally in

19

any of the slots. In our resource sharing mechanism, the waiting time for a particular

task slot can be obtained from the lease information that is shared by the Resource

Manager. If the waiting time is too long, the scheduler should be able to schedule the

task to a different resource right away.

We generalize the delay scheduling algorithm by introducing a minimum locality

level constraint. Instead of immediately skipping a job if any of its tasks cannot be

scheduled locally, we compare the locality level of the job with the minimum locality

level constraint. The locality level of a job, LocaleJ , is defined as the fraction of tasks

that the scheduler can launch locally, which can be computed as follow:

LocaleJ =

∑

T∈J







1 if B ≥ Bmin

0 otherwise

|J |

T is a task of a job J , |J | is the total number of tasks that need to be scheduled,

B is the bandwidth demand to deploy the task, and Bmin is the minimum bandwidth

threshold that determines the locality scheduling of the job. A job J will only be

scheduled if LocaleJ ≥ Localemin, where Localemin is the minimum locality threshold

that is set by the scheduler. A minimum locality level of 0 means that the job will be

scheduled regardless of the number of tasks that can be scheduled locally. On the other

hand, a minimum locality level of 1 means that a job can be scheduled only if all of the

tasks can be scheduled locally (effectively similar to the delay scheduling algorithm).

A minimum locality level constraint of 0 might result in locality scheduling for a low-

intensity workload since each scheduler tries to schedule its tasks locally and can find

such resources available. On the other hand, an overly high minimum locality constraint

may lead to high waiting time due to the restriction on scheduling. In practice, adjusting

the minimum locality threshold between the two extremes 0 < Localemin ≤ 1, may

increase the number of tasks that can be scheduled locally since it could prioritize jobs

that have higher locality. The maximum number of skips should also be set carefully

since a higher number of skips would result in a higher waiting time. In summary,

Localemin should be adjusted to the scheduler’s workload and the average number of

tasks that can be scheduled locally from the statistical history.

20

2.5 Experimental Evaluation

System Setup. We have implemented Awan on the Nebula Edge Cloud [?]. We have

modified the default monolithic resource scheduler in Nebula to the two-level scheduler

with the leased-based resource management mechanism. Any code execution is carried

out inside Google Chrome Web browser-based Native Client (NaCl) sandbox [?] that

is used in Nebula. Although our evaluation is based on the Nebula system, it is worth

noting that the proposed technique itself is not tightly coupled with the platform and

could be implemented into any Edge Cloud system that provides the system model

discussed in section 2.2.

We deployed 40 compute nodes and 32 storage nodes on PLE PlanetLab [?] nodes

that are geo-distributed across the Europe. The nodes are heterogeneous in terms of

their computation power and network bandwidth (varying from 1Mbps to more than

10Mbps). Most of the storage nodes that we deployed had at least one local compute

node, but not every storage node has a nearby compute nodes. Here, a node was consid-

ered ”local” if the network bandwidth between the nodes was greater than 8Mbps. All

centralized components such as the WAN Monitor, Storage Master, Resource Manager,

and Data Analytics Frameworks were hosted on a dedicated machine with an Intel Xeon

CPU E5-2609 and 16GB of memory.

Baseline Comparison. We compare Awan’s lease-based resource sharing mechanism

(Awan) with the two-level resource offer (Offer) and the direct share state mechanism

(Direct). We deployed 3 frameworks with different scheduling policy: (1) Lease-aware

scheduling (Lease), (2) First-Come-First-Serve scheduling (FCFS), and (3) Random

(Random) scheduling policy. Both Lease and FCFS implemented a network-aware task

placement algorithm proposed by prior work in geo-distributed MapReduce [?]. The

difference between them is that, Lease’s scheduler considered the future availability

of the unavailable slots and it might delay scheduling jobs that had low locality. In

contrast, FCFS’ scheduler was not aware of the future availability of any unavailable

resource. Thus, it would never wait for resources that were not available during the

scheduling time.

Workload. All of the schedulers scheduled the same set of MapReduce WordCount

jobs with input data size varied from 256MB to 512MB. Each input data had been

21

 0

 40

 80

 120

 160

 200

AwanOfferDirect AwanOfferDirect

A
v
e

ra
g

e
 j
o

b
 t

u
rn

a
ro

u
n

d
 t

im
e

 (
s
e

c
o

n
d

s
)

Low - High workload conditions

Map Reduce

(a) Average job turnaround time.

 0

 20

 40

 60

 80

 100

Low High

L
o

c
a

lit
y
 a

c
h

ie
v
e

d
 (

%
)

Workload

Awan Offer Direct

(b) Fraction of tasks scheduled locally.

Figure 2.3: Benefit of lease-based resource sharing technique.

partitioned into 16MB chunks, and distributed randomly to different locations. The

critical path of each of the MapReduce jobs in our experiments was in the Map job

which: downloaded the input data set from geo-distributed storage nodes, processed

them, and stored the result to one or more storage nodes. The computation of the

Reduce tasks in our experiments were not critical to the overall MapReduce performance

since the inputs of the Reduce tasks (the output of the Map tasks) were much smaller

compared amount of data processed by the Map tasks.

2.5.1 Leased-based Resource Sharing

In this experiment, we used 5 rounds of Poisson distribution-based simulation with 12

jobs/round. We evaluated the benefit of our lease-based resource sharing technique

under two different workload conditions: (1) Low workload with a job inter-arrival rate

of 100 seconds and (2) High workload with a job inter-arrival rate of 50 seconds. The low

and high workload conditions resulted in 1 to 2 and 2 to 4 concurrent jobs respectively.

On average, a task could be completed in approximately 40 to 60 seconds if it was

deployed on a local node and took more than 100 seconds for most of the time if it was

deployed on a distant node. We allowed 20 second grace period to every lease upon its

expiration. We also included a 95% confidence interval in the results.

Figure 2.3(a) shows the overall job turnaround time of of the frameworks deployed

on top of Awan, Offer, and Direct. We can see that during the low workload condi-

tion, all of them performed comparably because most jobs could be scheduled locally.

However, as the workload increases, the Lease’s framework scheduler in Awan was able

22

 0

 25

 50

 75

 100

 30 40 50 60

L
o

c
a

lit
y
 (

%
)

Number of compute nodes

Achieved Maximum

(a) Distance to maximum locality.

 0

 0.2

 0.4

 0.6

 0.8

 1

-60 -40 -20 0 20 40 60

0.83

C
D

F

Deviation (seconds)

(b) Lease estimation deviation.

Figure 2.4: Lease estimation.

to schedule more tasks locally (28% higher locality as shown in Figure 2.3(b)) since the

Lease’s scheduler were able to delay scheduling some of the tasks waiting for local slots.

This led to the 18% reduction of the overall job turnaround time. These results show

that knowing the future availability of the slots allows framework schedulers to better

schedule their tasks with higher locality. The framework schedulers in the Offer case

were not aware of the existence of the busy resources because the Resource Manager

offered only the available slots. In this case, a scheduler would always try to schedule

its tasks locally based on the offered resources, which led to a lower locality scheduling

that could be achieved. Similarly, the schedulers in Direct would schedule their tasks

locally only if the local shots were available since they did not know about the future

availability of the busy resources.

2.5.2 Lease Estimation

We further evaluated the locality that could be achieved by the Lease’s scheduler on

Awan compared to the maximum locality that could have been achieved if the future

availability of every slot is known in advance, which is impractical in real deployment.

In this experiment, we used 60 storage nodes and varied the number of compute nodes

from 30 to 60 nodes. Figure 2.4(a) shows locality difference between the locality that

was achieved by Lease and the maximum locality. The maximum locality was lower

than 100% when there were fewer compute nodes because the data were randomly

distributed throughout a much higher number of storage nodes and some of them did

not have any local compute node. The figure also shows the distance between the locality

23

that was achieved to the maximum locality is within 5%. This indicates that the Lease’s

scheduler could schedule its tasks close to the best possible locality regardless of the

number of compute nodes. We also evaluated our lease estimation accuracy that is

critical to the decision made by the Lease’s scheduler. We define the accuracy as:

accuracy = 1−
|tactual − tpredicted|

tactual

Figure 2.4(b) shows the accuracy CDF of the task execution prediction made by

the scheduler to the actual running time. On average, the lease estimation we used

results in 83% accuracy. We observed that the accuracy had some variations due to the

initial scheduling of the jobs that had not been previously seen by the scheduler and

the dynamics that occurred during the experiments. In the former case, the scheduler

estimated the task’s running time using a predefined value (100 seconds was used in

the experiment). When similar jobs were posted later, the scheduler could predict the

task running time based on its statistical records and resulted in a higher accuracy

prediction. However, sometimes the accuracy still fluctuated over time even if similar

jobs were posted due to the dynamic nature of the wide-area environment.

2.5.3 Locality-based Priority Scheduling

Lastly, we evaluated the benefit of prioritizing higher locality jobs based on theminimum

locality threshold. This goal of this approach is to prevent scheduling jobs with low

locality unless they have been waiting for a long time. The main problem of scheduling

low locality jobs in a resource-constrained environment is that it may reduce the locality

level that could be achieved for the other jobs. A job that could not achieve the minimum

locality threshold will be skipped for no more than 10 seconds. In this experiment, we

varied the minimum locality level from 0 to 1. A locality level 0 means that a job would

be scheduled regardless of the number of local tasks. On the other hand, a locality level

1 means that a job could only be scheduled if all of its tasks were able to run locally.

In this experiment, the resources were shared by 3 frameworks, whose schedulers

implemented the Lease aware task scheduling. We only show the results from the high

workload since during the low workload condition, the 3 schedulers were be able to

schedule their tasks with high locality for most of the time regardless of the threshold.

24

 0

 40

 80

 120

 160

 200

0.0 0.25 0.5 0.75 1.0

A
v
e

ra
g

e
 j
o

b
 t

u
rn

a
ro

u
n

d
 t

im
e

 (
s
e

c
o

n
d

s
)

Minimum locality threshold

Wait Map Reduce

(a) Average job turnaround time.

 0

 25

 50

 75

 100

0 0.25 0.5 0.75 1.0
 0

 10

 20

 30

 40

 50

L
o

c
a

lit
y
 a

c
h

ie
v
e

d
 (

%
)

A
v
e

ra
g

e
 M

a
p

 r
u

n
ti
m

e
 (

s
e

c
o

n
d

s
)

Locality threshold

Achieved Map runtime

(b) Locality level achieved.

Figure 2.5: Effects of varying the minimum locality threshold.

The jobs were posted using a Poisson Process with a rate of 50 seconds and we posted

2 jobs at a time instead of 1 job to allow multiple jobs to reside in the job queue.

Figure 2.5(a) shows the average job turnaround time over different minimum locality

threshold. We can see that the average job turnaround time can be further improved

by 13% when the minimum locality level was increased from 0 to 0.5. However, as the

threshold increased from 0.5 to 1.0, the percentage of tasks that could be scheduled

locally were relatively stable as shown in Figure 2.5(b). Setting the threshold too high

even increased the average job turnaround time. The reason is that, more jobs would

have higher waiting time in the queue due to the limited number of local tasks. However,

most of the time spent in the queue was unnecessary since most of the jobs could not

be scheduled with a perfect locality even when all of the nodes were available.

2.6 Related Work

Geo-distributed Data Analytics Systems. Recent work has considered utilizing

multiple data centers/edge clusters for geo-distributed batch analytics with the goal of

minimizing query execution time or efficiently utilizing WAN bandwidth [?, ?, ?, ?].

Although our work also considers a similar environment, we focus on the problem of

sharing resources across multiple data analytics frameworks. Thus, our work in this

chapter is orthogonal to theirs.

Resource Management. The problem of sharing resources across multiple data

25

analytics frameworks has been studied extensively [?, ?, ?, ?]. However, they are in-

tended for a cluster/data center environment. In contrast, this chapter address the

problem of sharing resources in a wide-area environment. As we have shown in this

work, existing cluster-based resource management needs modification to a wide-area

environment due to the critical needs for locality job/task scheduling. Although our

resource sharing model is similar to Mesos, our proposed technique uses a lease-based

mechanism in contrast to the resource-offer mechanism in Mesos. Furthermore, we in-

corporate the state sharing mechanism used in Shared State resource sharing model

that shares the future availability of all resources to all frameworks to help framework

schedulers apply delay scheduling effectively.

Job Scheduling in a Shared Environment. Researchers have also considered

optimizing individual framework scheduler in a cluster-based environment [?, ?, ?, ?,

?, ?]. Torque [?] is a batch scheduler for HPC cluster where data locality is not the

main issue for such jobs. Delay scheduling [?] and Quincy [?] incorporate techniques to

handle locality and fair sharing in a shared cluster environment. In contrast to their

work, we consider a wide-area environment, which requires a different job scheduling

decision due to the differences in the underlying environments.

2.7 Conclusion

In this chapter, we present Awan: a resource manager for data-intensive applications in

a geo-distributed Edge Cloud environment. Awan uses a lease-based resource sharing

mechanism to dynamically partition resources across multiple data analytics frame-

works. A lease provides a guarantee that a particular resource will be held by a frame-

work for no longer than the lease time. The lease information is shared to all frame-

works so that each framework can determine whether to wait (or not) for the desired

unavailable resources for better scheduling decision. This results in a higher locality

scheduling that can be achieved by each framework and improves the overall query

execution performance of geo-distributed data-intensive queries. We further propose a

locality-based priority scheduling that can further improve the locality job scheduling

of geo-distributed data analytics frameworks.

Chapter 3

Multi-Query Optimization in

Wide-Area Streaming Analytics

3.1 Introduction

Recent years have seen a growing interest in wide-area streaming analytics, where an-

alysts need to extract timely information from large amounts of data that are contin-

uously being generated across multiple locations. Examples of these data include not

only traditional log updates from content distribution networks (CDN) but also user-

generated microblogs, sensor data from distributed IoT devices, and video streams from

distributed surveillance and traffic control cameras. Such data are naturally produced

in a geo-distributed manner near the edge. The main challenge in analyzing these data

is in extracting information in a timely manner [?, ?].

The interest in real-time analysis over continuous data streams has resulted in the

recent development of various distributed stream processing systems [?, ?, ?, ?, ?,

?]. However, these systems have been designed primarily for a centralized, tightly-

connected cluster environment where compute nodes are inter-connected with high-speed

network. Using such systems to analyze geo-distributed data streams is impractical since

it requires transmitting large amounts of data continuously over the wide-area network

(WAN) that has limited bandwidth, slow, and expensive. This centralized approach

typically leads to wasteful WAN bandwidth consumption and is often unable to satisfy

the timeliness requirements of most applications [?, ?, ?, ?].

26

27

Most of the work in geo-distributed data analytics has instead focused on batch-

oriented processing, where finite input data sets are available prior to a query execu-

tion [?, ?, ?, ?, ?, ?]. In this case, the main challenge is to schedule each query that

minimizes either the overall execution time or WAN bandwidth consumption. Oth-

ers have also looked at the problem of geo-distributed data analytics in the context

of stream-oriented processing where long-running queries are deployed to extract infor-

mation from continuous data streams [?, ?, ?, ?]. However, most of them focused on

optimizing an individual query execution. In contrast, we consider optimizing multiple

queries by applying multi-query optimization in a WAN-aware manner.

In practice, the multi-tenancy nature of a Cloud environment leads to multiple

queries running concurrently and competing for limited, shared resources. Recent work

has indicated that it is common in a production environment for multiple queries to

exhibit common executions, whether in reading the same set of inputs or performing

the same data processing, especially for queries from the same application domain or

those that rely on popular data [?, ?, ?, ?, ?, ?, ?, ?]. Furthermore, as more and more

data are increasingly geo-dependent and made available to the public, it is increasingly

likely that more geo-distributed data analytics queries will share common executions. As

a concrete example, Twitter data streams are commonly analyzed for different purposes

including sentiment analysis [?], finding relevant audiences for an advertisement [?], and

detecting trending topics in a certain area or globally [?, ?]. Another example includes

CDN logs that are continuously monitored for high quality service assurance, network

monitoring, and user behavior analysis.

Based on this insight, we examine the opportunity of applying multi-query opti-

mization in the context of wide-area streaming analytics. Our goal is to efficiently and

effectively utilize the limited WAN bandwidth while providing low-latency and high-

throughput execution of multiple concurrent queries. We first study different types of

cross-query sharing opportunities: (1) input-sharing : where multiple queries share a

common subset of input data, (2) operator-sharing : where multiple queries perform

the same data processing on the same inputs, and (3) output-sharing : where multiple

queries additionally share partial output (or intermediate) results. Furthermore, we

demonstrate the importance of WAN awareness in applying multi-query optimization

in a wide-area environment: both for query planning and for operator scheduling.

28

There are several challenges in applying multi-query optimization (MQO) in the

context of wide-area streaming analytics. First, multiple queries may be submitted to

the system independently at different times by different users and hence, it may not be

possible to optimize these queries together prior to their deployment using the MQO

techniques proposed for batch-oriented workloads [?, ?, ?]. Second, most streaming an-

alytics queries are long-running and latency sensitive [?, ?, ?]. Thus, it is very inefficient

and impractical to interrupt existing query executions whenever a new query arrives to

optimize them together. Instead, our technique optimizes multiple query executions in

an online manner by allowing queries to share their common executions incrementally

without disrupting any of the existing executions. The wide-area environment further

imposes unique challenges in applying multi-query optimization due to the highly het-

erogeneous and limited bandwidth availability of the wide-area network. We show that

applying MQO designed for a local environment in a wide-area environment without

network awareness is sub-optimal and may lead to performance degradation due to the

assumptions of homogeneous and high-bandwidth network that are invalid in a real

wide-area system deployment.

We have implemented our WAN-aware multi-query optimization into a system pro-

totype called Sana: an Apache Flink [?]-based stream processing system that we have

adapted for wide-area deployments. We quantitatively evaluated Sana using 14 geo-

distributed EC2 1 data centers. Experimental evaluation using multiple streaming

analytics queries [?, ?] on a real Twitter trace shows that Sana is able to achieve 21%

higher throughput while saving WAN bandwidth consumption by 33% compared to the

state-of-the-art WAN-aware, sharing-agnostic system.

We summarize our contributions in this chapter as follows:

• We propose a multi-query optimization in the context of wide-area streaming ana-

lytics that allows multiple queries to incrementally share their common executions

in an online manner (Section 3.4).

• We highlight the importance of network awareness in applying multi-query opti-

mization in a wide-area environment, both in planning and scheduling multiple

query executions (Section 3.5).

1 https://aws.amazon.com/ec2/

29

• We have implemented our WAN-aware multi-query optimization techniques in a

system prototype based on Apache Flink (Section 3.6).

• We experimentally demonstrate the effectiveness of our WAN-aware multi-query

optimization through a real system deployment across geo-distributed EC2 data

centers using Twitter trace-driven queries (Section 3.7).

3.2 Background and Motivation

In this section, we discuss the background of wide-area streaming analytics and illustrate

through an example the benefits of applying multi-query optimization to this context.

3.2.1 Wide-Area Streaming Analytics

Stream Execution Model

Stream processing systems can be generally classified into two different classes based

on their computational model: (1) the dataflow model [?, ?, ?, ?], and (2) the bulk-

synchronous parallel (BSP) model [?, ?, ?]. Here, we focus on the dataflow model where

data streams flow continuously from one or more data sources into the system and

are transformed by a set of stream operators. We consider this model over the BSP

model for two reasons. First, it allows data streams to be processed with lower latency

and higher throughput [?, ?]. Second, the BSP model incurs higher communication

overhead due to the frequent synchronization at every micro-batch boundary [?], which

will be inefficient in a wide-area environment. However, our proposed techniques are

not limited to the dataflow processing model, and can be adapted to the BSP model.

A streaming analytics query is typically written using a high-level, SQL-like lan-

guage [?, ?]. The query is (1) translated and optimized by a Query Optimizer into its

corresponding execution plan, represented using a directed acyclic graph (DAG), and

(2) deployed by a Job Scheduler. A query execution graph, denoted as G = (V,E),

consists of vertices V and edges E. Each vertex v ∈ V corresponds to a stream op-

erator fv that consumes input streams I from its predecessor (upstream) vertices and

produces output streams O to its successor (downstream) vertices (O = fv(I)). Each

edge e ∈ E represents a data flow between two vertices. Example of stream operators

30

include source, map, reduce, join, filter, and sink. The source and the sink operators are

specialized operators that receive input streams from external sources and output the

results to final destinations respectively.

Geo-Distributed Stream Processing

We consider a stream processing system comprising multiple compute nodes that are

geo-distributed across multiple sites, and a master node located in one of the sites. A

streaming analytics query is submitted to the master node comprising aQuery Optimizer

and a Job Scheduler. The Query Optimizer will optimize the execution plan of the query

(e.g., parallelize and chain multiple operators) and the Job Scheduler will deploy each

parallel execution instance (task) on a compute node.

The inputs of a wide-area streaming analytics query are produced by multiple sources

that are geo-distributed, and they are continuously ingested into nearby edge clusters or

data centers. Examples of such data streams include sensor readings, microblogs from

social network applications, and log updates from distributed CDN servers. Each query

continuously reads these geo-distributed input streams, processes them, and outputs its

results to one or more final locations, e.g., stored in databases, displayed on a monitoring

dashboard, or streamed back as new inputs for iterative analysis.

To minimize data transfer overhead between operators, the Job Scheduler will deploy

connected operators on the same site. However, common operators such as union,

shuffle, and join may require cross-site data transmission since their inputs may be

generated at different locations. Thus, the Query Optimizer and the Job Scheduler

should be aware of the underlying WAN to generate an optimized execution plan and a

scheduling decision respectively that can effectively utilize WAN bandwidth [?, ?, ?].

3.2.2 Benefits of Multi-Query Optimization in Wide-Area Settings

Multi-Query Optimization in Data Analytics World

Multi-query optimization (MQO) is a well-studied topic in the database community to

improve the performance of multiple query executions, especially in relational databases [?,

?, ?, ?, ?, ?, ?]. Since many data analytics queries often rely on common popular data

sets and may perform common executions, recent work has argued that it is imperative

31

to apply MQO in the context of data analytics to improve the performance of multiple

data analytics queries [?, ?, ?, ?, ?]. Here, the Query Optimizer needs to identify the

commonality between queries and potentially combine their executions to mitigate re-

dundant executions. The combined execution must produce the same outputs as those

produced by executing the queries independently.

Applying multi-query optimization in a wide-area environment can reduce WAN

bandwidth consumption by eliminating the redundancy in processing and transmitting

duplicate data over the WAN. In the face of bandwidth constraints, this can improve the

overall performance of concurrent query executions. Although there have been attempts

that look at the opportunity of optimizing multiple queries in the context data analytics,

their focus have been largely on batch-oriented workloads [?, ?, ?]. These approaches are

not applicable for stream-oriented workloads because most streaming analytics queries

are long running: deployed once and run indefinitely [?, ?]. Thus, applying MQO

in streaming analytics should be done in an online manner as new queries arrive by

sharing any common execution incrementally. Previous attempts have also looked at

the opportunity of applying multi-query optimization for stream-oriented queries over

continuous data streams, but focused on memory limitations because they were designed

for a single-server deployment [?, ?, ?]. On the other hand, we consider a wide-area

environment where the limited WAN bandwidth is typically the main constraint.

Illustrative Example

To see the opportunity of applying multi-query optimization in wide-area streaming

analytics, consider the following illustration. Suppose there are 2 different analytics

queries that are submitted to the system:

Query 1: A marketing group is periodically monitoring the trending topics in Twitter

across the US, Europe, and Asia to support their operational decisions:

SELECT Time, Topic, COUNT(*)

FROM Host.US, Host.EU, Host.Asia

GROUP BY WINDOW(Time.Minutes(1)), Topic

HAVING COUNT(*) > 100

32

(a) Logical execution of Query 1. (b) Logical execution of Query 2.

Figure 3.1: Logical execution plans of Query 1 and Query 2.

Query 2: Another group of analysts is monitoring the impressions from Twitter users

in the US and Europe that are related to a specific type of campaign:

SELECT Time, AdInfo.Campaign

FROM (SELECT Time, Topic

FROM Host.US, Host.EU

GROUP BY WINDOW(Time.Seconds(30)), Topic

HAVING COUNT(*) > 100) AS Tweet, AdInfo

WHERE AdInfo.Topic = Tweet.Topic

Figure 3.1 shows the logical execution plans of both queries. In this example, both

queries subscribe to common input sources (US and EU), deserialize, filter, reduce the

data (σ and π) to remove irrelevant information (e.g., discard user profile), aggregate

the results (∪), and send only the relevant information to their corresponding final

locations. In the case of Query 2, the intermediate results are further joined (⊲⊳) with

static data that are stored in AdInfo.

Figure 3.2(a) shows the independent deployment of the two queries. For clarity

reasons, suppose the input stream rate from each source is 10MB/s and the selectivity

of each selection and projection operator is 0.5. We also consider the data transfer

overhead within a site to be negligible since intra-data center bandwidth is typically 1-2

orders of magnitude higher than inter-data center bandwidth [?]. In this case, deploying

33

(a) Independent deployment. (b) Shared deployment.

Figure 3.2: Execution sharing between Query 1 and Query 2.

the two queries independently will consume WAN bandwidth with a rate of 75MB/s

(40MB/s for Query 1 and 35MB/s for Query 2).

However, we can see that both queries partially share common input streams (US

and EU) and perform similar data processing (e.g., filtering user info). If the Query

Optimizer is able to identify these commonalities, it may combine their common ex-

ecutions, which will significantly reduce the WAN bandwidth consumption rate to

50MB/s = 40MB/s+10MB/s (Figure 3.2(b)), which saves ∼33% of the original band-

width consumption. This illustration shows that optimizing multiple query executions

in wide-area streaming analytics can significantly save WAN bandwidth consumption.

In addition to saving WAN bandwidth consumption, sharing common executions

between multiple queries can also improve the overall performance in the face of band-

width constraints. In the previous example, if the available bandwidth from the Virginia

data center to the London data center is less than 10MB/s, deploying the two queries

independently will result in a bandwidth contention between the two queries. One pos-

sible solution is to reduce the data transmission rate over the bottleneck link through

an approximation, aggregation, or data reduction, which trades the output’s quality for

higher overall performance [?, ?, ?, ?]. Alternatively, the Query Optimizer may choose a

less optimal query execution plan that avoids the congested network link [?]. However,

we argue that making this trade-off is unnecessary if the system is able to detect that

the problem arises due to redundant data transmission. Furthermore, these techniques

still result in a wasteful bandwidth consumption that could be reduced.

34

3.3 Sana: System Architecture

Figure 3.3: Sana system architecture.

We propose a geo-distributed stream processing system called Sana which imple-

ments multi-query optimization in a WAN-aware manner. Figure 3.3 shows the system

architecture of Sana. When a new (possibly a recovery) query is submitted to the

system, the Query Optimizer will optimize its execution plan while considering the

inter-site bandwidth information that is periodically monitored by the WAN Monitor.

This inter-site network information is particularly important to optimize the execution

plan and the task placement of a wide-area data analytics query [?].

When applying multi-query optimization, the Query Optimizer will also consider the

deployment of the existing queries that is provided by the Shared Job Manager to iden-

tify any commonality between the newly submitted query and the existing ones (Section

3.4). After the optimized query execution plan has been generated, the Job Scheduler

will schedule and deploy each operator instance on a compute node in a WAN-aware

manner to minimize the overall query execution latency and/or WAN bandwidth con-

sumption (Section 3.5). Once a query has been deployed, it may periodically checkpoint

its execution state and report the state metadata to the Recovery Manager. This mech-

anism allows the system to replay a query execution from its latest checkpoint state in

the case of failures. The implementation details will be discussed in Section 3.6.

35

3.4 Multi-Query Optimization

In this section, we look at how the Query Optimizer optimizes multiple query executions

by sharing any commonality between them. We first study different types of sharing

opportunities that can be exploited between two queries (Section 3.4.1), and show how to

apply them across multiple queries (Section 3.4.2). We will discuss the WAN awareness

in optimizing multiple query executions in Section 3.5.

3.4.1 Sharing Opportunities

Input-Operator Sharing

A natural way to determine whether two queries share common executions is to compare

their vertices. Two vertices v1 and v2 are considered equivalent iff they share the same

input streams Iv1 = Iv2 , perform the same transformation function fv1 = fv2 , and thus

produce the same output streams Ov1 = Ov2 . We refer to this type of sharing as IN-OP.

In this case, deploying the two vertices independently will result in a full redundancy in

both transmitting and processing duplicate data. This redundancy can be eliminated

by deploying only one of the vertices. In this case, the Query Optimizer can merge

the two vertices together, i.e., let the Job Scheduler know that v2 does not need to be

scheduled if v1 has already been deployed.

In practice, two vertices may share common inputs and operators, but output the

results to a different set of downstream vertices (possibly with some overlap). We denote

the set of v’s downstream vertices as Dv = {d1v , . . . , d
n
v }. These conditions are especially

common in the early stages of executions where multiple queries may read the same

input streams from the same data sources although their downstream vertices tend to

be more specific to each individual query. In this case, the output streams to any of

the downstream vertices that are not shared by the two vertices need to be replicated,

while the common outputs can be transmitted only once (Figure 3.4).

Input-Only Sharing

Since multiple vertices with different operators/transformation functions may rely on a

common set of input streams, we relax the sharing requirement of the IN-OP type of

36

Figure 3.4: IN-OP: Input-Operator Sharing. Here, v1 and v2 share common input
streams and operators, but only partially share the output streams.

sharing by removing the operator-equality condition, i.e., fv1 6= fv2 , therefore Ov1 6= Ov2 .

This allows two vertices to share their common input streams even though they have

different operators. We refer to this input-only sharing as IN. In this case, independently

deploying the two vertices will result in redundancy in transmitting duplicate input data.

Unlike IN-OP, this type of sharing requires both vertices to be deployed since they rely on

different transformation functions. However, applying this type of sharing will eliminate

the redundancy in transmitting duplicate input streams from their common upstream

vertices, which can be highly beneficial in the case where the inputs are transmitted

over slow and limited bandwidth links, as in a wide-area environment.

In wide area settings, the IN type of sharing can be exploited by deploying the two

vertices on the same site (or the same node). However, the physical deployment of a

stream operator is typically determined by the Job Scheduler after the query execution

plan has been generated by the Query Optimizer. Thus, the Query Optimizer needs

to provide a hint to the Job Scheduler in exploiting this type of sharing. The co-

location deployment of two vertices does not necessarily eliminate the redundancy in

transmitting duplicate data because they are still considered as two independent stream

edges to their respective downstream vertices. To exploit this type of sharing, we

introduce a lightweight router operator R which (1) keeps track of the input edges of

each input stream originated from remote vertices, and (2) forwards each record to every

downstream vertex without performing any data transformation. Note that the router

operator does not buffer nor batch the records, instead it only routes the records to

37

Figure 3.5: IN: Input Sharing. v1 and v2 only partially share common input streams.

multiple operators, similar to the task of router in networks. Thus, the overhead of the

router operator is negligible as shown in Section 3.7.

Partial Input Sharing. In the case of IN-OP, two vertices that share common op-

erators must rely on the same exact input streams since in general applying the same

transformation to different input sets does not guarantee the same resulting outputs.

This strict input-stream-equality can further be relaxed in the case of IN since the two

vertices do not rely on the same results. Thus, the IN type of sharing allows two vertices

with different operators to partially share their input streams (Figure 3.5).

3.4.2 Sharing Across Multiple Queries

Having discussed different sharing opportunities that can exist between two queries, we

will now look at how the Query Optimizer exploits these opportunities across multiple

queries. Since most streaming analytics queries are long-running, it is possible that a

newly submitted query exhibits common executions with multiple existing queries that

may have already been deployed. Thus, the Query Optimizer needs to determine with

which of the queries it should share the new query.

One possible approach to determine which query to share is by finding a query

that exhibits the highest similarity score using a subgraph-matching algorithm [?, ?].

However, we argue this approach is sub-optimal since it limits the sharing opportunities

to only 1 query. Instead of finding the similarity in a query-centric manner, we adopt

a vertex-centric philosophy where a query may share its vertices with multiple queries.

38

Figure 3.6: Cross-query execution sharing: C shares its execution with A and B.

This will result in a higher overall degree of sharing. We compare a new query with each

of the existing queries topologically from the source vertices. Traversing the vertices in

topological order gives the benefit of early termination in traversing a graph. If two

vertices are not equivalent (v1 6= v2), by definition, none of their downstream vertices

are equivalent, and hence they do not need to be compared.

Although finding common vertices among multiple queries can be computationally

expensive, this step is only performed during the query planning stage. Since most

streaming analytics queries are long-running, this overhead is justified for higher overall

execution performance and better resource utilization. To reduce the analysis cost, the

Query Optimizer may limit the number of queries to be analyzed or adopt a group-

based analysis, as proposed by existing work in Internet Databases [?], which reduces

the number of vertices that needs to be analyzed.

Figure 3.6 shows an example where query (C) shares its execution with existing

queries (A and B). When C arrives, the Query Optimizer finds that C shares (1) common

input-operators with B at s5, s6, and v3, with both A and B at s3, s4, and v2, and (2)

input streams with B (Iv5 ∩ Iv6 6= ∅). In this case, the Query Optimizer may exploit

these sharing opportunities by merging the common executions of these queries. Thus,

the Job Scheduler only needs to deploy two additional vertices for C: v6 that exploits IN

sharing with v5, and v7 that does not exhibit any sharing opportunity with the rest of

the vertices, while s3, s4, s5, s6, v2, and v3 are shared with IN-OP sharing.

39

3.5 WAN-Aware Optimization

Our discussion so far has focused on the sharing opportunities between multiple queries

without considering the wide-area constraints. In this section, we focus on address-

ing the challenges of applying these sharing opportunities in a wide-area environment.

Specifically, we propose a WAN-aware optimization to the Query Optimizer in gener-

ating and optimizing query execution plans while considering the sharing opportunities

with existing query executions (Section 3.5.1) and WAN-aware operator placement to

the Job Scheduler in deploying stream operators (Section 3.5.2).

3.5.1 WAN-Aware Query Planning

In the context of wide-area data analytics, the Query Optimizer needs to consider the

inter-site bandwidth availability to generate an optimized query execution plan for each

query [?]. Similarly, the Query Optimizer must also optimize multiple query executions

in a WAN-aware manner. The WAN awareness in this context is used to determine

whether a query should share its execution with other queries (when possible) based

on the current WAN bandwidth availability between sites. Without WAN awareness,

sharing executions across multiple queries may result in WAN bandwidth contention

that will degrade the performance of either or both the new and the existing queries.

Since our Query Optimizer analyzes the commonality between queries in a vertex-

centric manner, a vertex may exhibit more than one sharing opportunities with multiple

vertices from different queries. Figure 3.7 shows a situation where vertex v can share

both its inputs and operator with v2, or partially share its inputs with either v1 or v3. In

this case, the Query Optimizer needs to determine which of these sharing opportunities

should be exploited, or decide not to share the execution at all.

One possible approach is to choose a vertex that maximizes the degree of shar-

ing since intuitively it will maximize the duplicate elimination. However, this naive

approach may result in a performance degradation. Consider the scenario shown in

Figure 3.7. If the Query Optimizer always tries to maximize the sharing regardless

of the network conditions, it will exploit the IN-OP type of sharing with v2 since the

input streams of vertex v are fully covered by v2. However, we can see that Site B

does not have sufficient bandwidth capacity for transmitting its output streams. Thus,

40

Figure 3.7: Sharing opportunities: v exhibits IN-OP with v2, and IN with v1 and v3.

exploiting IN-OP with v2 may result in bandwidth contention between v, v2, and v3.

On the other hand, if the Query Optimizer is aware of the bandwidth constraints, it

may exploit the IN type of sharing with v1 by partially sharing their input streams at

Site A. This decision is preferable because it does not cause any bandwidth contention

that will degrade the overall query execution performance. Thus, there is a trade-off

between minimizing bandwidth consumption (maximizing sharing) and maximizing the

performance of concurrent executions.

Algorithm 1 shows how the Query Optimizer considers WAN bandwidth availability

to determine which sharing opportunities (if any) to be exploited. In the case of IN-OP,

the Query Optimizer needs to ensure that the site where the shared vertex vi has been

deployed, has sufficient egress bandwidth capacity to transmit additional output streams

(Line 7). This can be estimated proportionally to the increase in the number of out-

put stream consumers since both vertices rely on the exact same output data streams

(Ov = Ovi), and only their downstream vertices are different. In the case of IN where

vertices only share partial input streams, the Query Optimizer needs to further ensure

there is sufficient bandwidth in both the ingress and egress links to transmit additional

input and output streams respectively. If the Query Optimizer predicts that exploiting

the opportunity can potentially result in bandwidth contention, it will not exploit the

opportunity, which trades bandwidth utilization for higher overall performance.

Note from Lines 8 and 13 that the Query Optimizer outputs a set of vertices that

can be shared by each vertex (if any) instead of only a single vertex as long as they

41

Algorithm 1 WAN-aware execution sharing

1: procedure find-common-vertices(v, V)
2: for vi ∈ V topologically do
3: share← getShareType(v, vi)
4: (Bin, Bout)← getBandwidth(vi)
5: if share == IN-OP then
6: ∆O ←

|Dv∪Dvi
|

|Dvi
| ×Ov

7: if Bout > ∆O then
8: add vi to the set of IN-OP vertices
9: end if

10: else if share == IN then
11: ∆I ← Iv − Ivi
12: if Bout > Ov and Bin > ∆I then
13: add vi to the set of IN vertices
14: end if
15: end if
16: end for
17: end procedure

ensure sufficient bandwidth for deployment. In this case, the Job Scheduler needs to

choose which vertex to be shared. We adopt this design to give the Job Scheduler a

flexibility to apply different optimization in scheduling different queries. For example,

some queries may tolerate higher delay for lower bandwidth consumption while others

may require real-time results even though they consume more bandwidth.

3.5.2 WAN-Aware Operator Scheduling

While the previous section focuses on bringing WAN awareness to the Query Optimizer

in planning a query execution, this section focuses on incorporating WAN awareness

to the Job Scheduler in deploying the execution. Once the Query Optimizer has iden-

tified a set of vertices that can be shared for each vertex in the query execution plan,

the Job Scheduler is responsible for the actual deployment of the vertices themselves.

Algorithm 2 shows how the Job Scheduler schedules each operator while considering

the sharing opportunities that have been identified by the Query Optimizer. The Job

Scheduler will place and deploy each operator in the physical execution graph topolog-

ically based on the deployment of its upstream vertices. Although this approach may

not result in the most optimal end-to-end deployment of the entire graph, this has been

shown to work reasonably well in practice with significantly lower complexity [?].

42

Algorithm 2 WAN-aware operator placement

1: procedure schedule(v)
2: if find vi ∈ set IN-OP then
3: add edges from vi to ∆D ← Dv\Dvi

4: else if find vi ∈ set IN then
5: deploy v at the same site as vi
6: else if Iv are local input streams then
7: site-locality deployment
8: else ⊲ neither share-able nor a local operator
9: WAN-aware deployment

10: end if
11: end procedure

In exploiting the sharing opportunities, the Job Scheduler prioritizes exploiting

IN-OP over IN because the gain of IN-OP ≥ IN in terms of minimizing WAN bandwidth

consumption since the former type of sharing covers the benefits of the latter. Note

that exploiting any of these opportunities guarantees sufficient bandwidth deployment

since the Query Optimizer has already omitted those that may result in a bandwidth

contention. If a vertex exploits the IN-OP type of sharing with any of the existing ver-

tices, the Job Scheduler does not need to deploy the vertex. However, the Job Scheduler

may need to update the existing execution by creating additional edges from the shared

vertex to any of the additional downstream vertices that is not shared by the two ex-

ecutions (Line 3). On the other hand, vertices that exhibit IN type of sharing will be

deployed on the same site as their corresponding shared vertices to mitigate redundant

data transmission over the WAN (Line 5).

If a vertex can be shared with multiple vertices of the same sharing type (e.g., v

exhibits IN with both v1 and v3 in Figure 3.7), the Job Scheduler needs to determine

which of the vertices should be shared (Lines 2 and 4). Since our goal is to minimize

WAN bandwidth consumption, our Job Scheduler will choose a vertex that maximize

the sharing. Although maximizing sharing may not necessarily minimize latency, in

practice this will result in an improved execution performance [?]. If the goal is to

minimize delay, the Job Scheduler may choose the vertex that minimizes latency.

Vertices that do not exhibit any sharing opportunity will be deployed based on the

locations of their upstream vertices. Those that rely only on local input streams will

be deployed on the same site as their upstream vertices to minimize the communication

43

overhead, especially the high latency of the wide area network. On the other hand,

vertices that rely on one or more input streams originated from remote sites will be

deployed using a WAN-aware operator deployment. We adapt the cost model from

Hourglass [?] which optimizes stream operator placement that balances WAN bandwidth

consumption and latency, by minimizing
∑

l∈L
DRl(ℓl)

2

Bl
where l is a link between two

sites, DRl is the data rate transmitted over the link, ℓl is the latency overhead, and

Bl is the available bandwidth of the link. Any update of a link will be reflected in the

bandwidth availability that is continuously being monitored by the WAN Monitor.

3.6 Implementation

We have implemented Sana in a system prototype based on Apache Flink [?] - a stream

processing system with the dataflow computational model. We have modified and

adapted the original Flink system to a wide-area environment by implementing net-

work monitoring and multi-query optimization modules, as well as incorporating WAN

awareness to both the Query Optimizer and Job Scheduler.

• WAN bandwidth monitoring. The bandwidth availability between sites is

continuously monitored by the WAN Monitor. Congested links are detected by

the ratio of the current bandwidth utilization over the maximum available band-

width [?]. A ratio of <1 indicates that the network link has spare bandwidth

capacity while a ratio >1 indicates that the bandwidth is contended. This band-

width information is shared with both the Query Optimizer and the Job Sched-

uler to implement the WAN-aware query planning (Section 3.5.1) and operator

scheduling (Section 3.5.2) respectively.

• Multi-query optimization. We have implemented our WAN-aware multi-query

optimization module in Flink to find common executions between a newly sub-

mitted and existing queries in a WAN-aware manner. To exploit the IN type of

sharing, the Query Optimizer will modify the original query’s execution plan by

adding a router operator for every vertex that rely on remote input streams. The

router operators are added proactively to prevent suspending the execution of an

existing vertex. Although the use of router operators would still incur duplicate

44

data streams from the router to the downstream operators, this data forwarding

happens within a local environment (within a site or even a node) and hence, its

overhead is negligible compared to the overhead from transmitting duplicate data

across sites. We show in Section 3.7 that the overhead of the router operator is

negligible even when it is not shared.

• WAN-aware scheduling. The default Flink scheduler has already implemented

node-locality scheduling, which tries to schedule a vertex on the same node with

any of its upstream vertices. However, if an operator relies on input streams

from different nodes, the original scheduler will choose one of the nodes without

considering the network condition (bandwidth availability and latency) between

them. This simple policy works well in a centralized cluster environment, for which

Flink has been designed. However, this scheduling policy may result in a non-

optimal operator placement in wide-area settings. We have modified the default

Flink’s scheduler by incorporating the WAN awareness discussed in Section 3.5.2.

• Fault tolerance. A query whose vertices are shared with other queries may be

terminated either intentionally (e.g., the analysis is complete) or unintentionally

(e.g., failure in one of the vertices in the query plan). To handle these issues, the

Shared Job Manager keeps track of every vertex that is shared with other queries.

Whenever a query that shares a vertex is terminated, it removes the reference to

the shared vertex. A vertex execution will only be terminated if all queries that

share the execution have been terminated. This simple approach prevents cascad-

ing failures unless they happen directly on the stream operator logic. Recovering

from failures that involves shared vertices is challenging since a stream processing

system needs to ensure the exactly-once semantic processing guarantee. Sana uses

a checkpoint-and-replay fault recovery mechanism, where each query periodically

checkpoints its processing state and thus the system can restore its execution

from the last checkpointed state upon recovering from failures [?]. We maintain

an independent state for each vertex that is shared by multiple queries. Thus,

if a sharing query fails, other queries can continue their executions and update

their states independently. When a failed query is restarted, it may not be able

to immediately share the vertex it was sharing earlier since the shared vertex may

45

have a different state. In this case, the query needs to catch up its processing in

order to re-share the vertex.

• Query adaptation. Since many streaming analytics queries are long running, a

query needs to gracefully adapt to runtime dynamics, such as changes in workload

or network topology [?, ?]. In this case, the Query Optimizer and the Job Scheduler

may change the execution plan and/or the deployment of the query respectively

whenever the environment changes significantly. We will address the problem of

adapting a shared query execution later in Chapter 5.

3.7 Experimental Evaluation

Experimental Setup. We experimentally evaluate the effectiveness of Sana using a

wide-area system deployment across 14 geo-distributed EC2 data centers. The compute

nodes were deployed on 8 of the sites (Virginia, California, Canada, London, Frankfurt,

Sydney, Tokyo, and Singapore) and the input streams are generated by external sources

that were located on the other 6 sites (Ohio, Oregon, Ireland, Seoul, Mumbai, and Sao

Paulo). To prevent an inaccurate evaluation caused by the data exchange overhead

between the external sources and the system, we follow the design proposed by recent

work which uses distributed in-memory data generators instead of message brokers as

the external sources [?].

We also measured the bandwidth availability and the latency between the sites

prior to running the experiments as initial network information to the WAN Monitor.

Our measurements show that WAN bandwidth between EC2 data centers ranged from

20Mbps to 280Mbps, confirming a similar trend from prior work [?, ?].

Dataset and Queries. All experiments are based on real geo-tagged Twitter trace

that was collected from Twitter Streaming APIs 2 in December 2015. It consists of

approximately 4 million tweets per day. Since the trace only represents a sample of

real Twitter workload, we scaled the playback rate to 6000∼8000 tweets per second to

reflect the actual tweet rate [?]. The tweets were distributed across the 6 input sources

based on their geographic information.

2 https://developer.twitter.com/en/docs

46

Table 3.1: Sana query details
Category Query Examples Num. Operators

Tweet Statistics [rate] of [tweet, hashtag] on [country, language, topic] 10-18
Users Analysis Num. of tweet per [gender, age-group] per [country, language] 12-18
Top-k Analysis Top-k [hashtag, topic] per [language, country] 10-15

Sentiment Analysis Sentiment of each [hashtag, country, topic] 12-18
System Load [rate, count] of [data, request] per [node, region] 6-10

We implemented 12 streaming analytics queries based on actual streaming analytic

queries on Twitter streams [?, ?]. Table 3.1 shows the summary of the queries. Each

query consisted of various combination of operators including map, reduce, filter, join,

union, and window. Each query subscribed to 4-6 input sources and outputs its final

result locally at the sink operator. Some of the queries also rely on static data sources.

For example, in the case of trend analysis, the query discards all the irrelevant words by

consulting to an external database. Another example includes a sentiment dictionary

used in sentiment analysis. In all of the experiments, each query is submitted indepen-

dently with a time gap of 10 seconds to mimic the independent deployment of most

streaming analytics queries in a practical scenario. Hence, batching multiple queries

together prior to their deployment is impractical.

Evaluation Metrics. We use the following metrics to evaluate and compare the per-

formance of the systems:

• Throughput: The average rate of distinct records/second processed by the system

for each query. In the face of bandwidth constraints, the system may trigger a

backpressure to reduce the rate of an input stream.

• WAN Bandwidth Utilization: The average rate of records (including duplicates)

transmitted over the WAN. This is particularly critical in a wide-area environment

that typically has limited bandwidth.

• Latency: The latency is measured as an event time latency, which is the difference

between the time when a record is generated at the external data source and when

its processed output is written to the final location by the sink operator.

47

 0

 2000

 4000

 6000

Default NET MQO Sana

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

(a) Throughput.

 0

 20

 40

 60

 80

 100

Default NET MQO SanaB
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

(b) Bandwidth utilization.

 0

 20

 40

 60

 80

 100

Default NET MQO Sana9
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

%
)

(c) Latency w.r.t. Default.

Figure 3.8: Overall system performance comparison.

3.7.1 Baseline System Comparison

We evaluated the benefits of WAN-aware multi-query optimization by comparing the

following systems:

• Default: The default Flink system that does not allow sharing executions nor does

it implement WAN-aware scheduling, but implements node-locality scheduling.

• NET: A modified Flink system that adopts the WAN-aware task scheduling al-

gorithm that minimizes query execution time by distributing tasks across sites

with sufficient bandwidth. However, it does not allow queries to share common

executions. The batch-schedule optimization in Clarinet is not applicable to this

context due to the independent deployment of the queries.

• MQO: A modified Flink system that allows queries to share common executions.

But, it does not implement WAN-aware scheduling (default Flink scheduler).

• Sana: Our modified Flink system that incorporates the WAN awareness in both

optimizing multiple query executions and scheduling stream operators.

Figure 3.8 compares the overall performance of different systems with the 12 queries

running concurrently. We can see from Figure 3.8(a) that Sana resulted in 44%, 16%,

and 26% higher throughput compared to Default, NET, and MQO respectively. Fig-

ure 3.8(b) also shows that Sana was able to achieve these performance gains while

consuming significantly lower bandwidth compared to both Default and NET (∼33%

less bandwidth utilization). These results indicate that Sana could efficiently utilize

the WAN bandwidth by preventing transmitting duplicate records over the constrained

48

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10 11 12

T
h

ro
u

g
h

p
u

t
(%

)

Query #

NET MQO Sana

Figure 3.9: Per-query execution throughput.

 0

 50

 100

 150

 200

1 2 3 4 5 6 7 8 9 10 11 12

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

%
)

Query #

NET MQO Sana

Figure 3.10: Per-query WAN bandwidth consumption.

network links. Although MQO consumed less bandwidth with respect to Sana, the band-

width utilized by Sana is effectively used to transmit more records. Furthermore, MQO

resulted in a higher overall query execution latency compared to Sana and NET, as shown

in Figure 3.8(c). This highlights the importance of WAN-aware operator scheduling to

effectively utilize limited network bandwidth in a wide-area environment. The latency

and throughput gains achieved by MQO with respect to Default is because MQO utilized

the available bandwidth more efficiently by preventing transmitting redundant data over

the WAN while Default was not aware of such redundancy.

We further break down the overall performance and WAN bandwidth consumption

rate of the queries to observe the gain for each individual query relative to Default. We

make a few observations. First, we can see from Figure 3.9 that NET was able to improve

the overall throughput of each query by up to 48% and resulted in 40% lower latency

compared to Default (see Figure 3.11). However, we can also see from Figure 3.10 that

the WAN-aware scheduling in NET that tried to minimize query execution latency did

not reduce the overall WAN bandwidth consumption even though it resulted in higher

throughput. This indicates that NET was able to process a higher rate of data streams

by avoiding overloaded network links.

49

 0

 50

 100

 150

1 2 3 4 5 6 7 8 9 10 11 12

9
5

th
 p

e
rc

e
n

ti
le

 l
a

te
n

c
y
 (

%
)

Query #

NET MQO Sana

Figure 3.11: Per-query execution latency.

Secondly, we can see from Figure 3.10 that MQO was able to significantly reduce the

bandwidth utilization by up to 60% by sharing common executions between queries.

The only cases where the MQO could not reduce the bandwidth utilization were for query

1 and 7 which did not exhibit any commonality with the other queries. However, we can

see from Figure 3.9 that query 7 was able to process more data streams with a similar

increase. This indicates that the bandwidth was efficiently used for transmitting a

higher rate of data streams. We can also see from Figure 3.10 and Figure 3.11 that

although NET consumed higher network bandwidth compared to the MQO it was able to

outperform MQO for most queries in terms of minimizing execution latency. This shows

that minimizing WAN bandwidth consumption in a wide-area environment does not

necessarily minimize the query execution latency.

Thirdly, we can see that Sana improves the overall performance of each query ex-

ecution while consuming less network bandwidth. It resulted in up to of 87% higher

throughput and 68% lower latency compared to Default. Similar to the MQO case,

both query 1 and 7 consumed higher bandwidth, but the extra bandwidth was used for

transmitting more data. Furthermore, Sana also achieved 21% higher throughput com-

pared to NET by eliminating redundant data transmission, as reflected by the reduction

in bandwidth utilization for most queries. Lastly, even though Sana consumed more

bandwidth compared to MQO, it resulted in a higher throughput. These results show

Sana can utilize WAN bandwidth effectively and efficiently.

3.7.2 Impact of Degree of Sharing

In the next set of experiments, we explore the impact of degree of sharing in applying

multi-query optimization. Specifically, the benefit of allowing queries to partially share

50

 0

 4000

 8000

 12000

1 2 4 6 8

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Number of queries

No-Share
Strict-Share

Sana

(a) Throughput.

 0

 20

 40

 60

1 2 4 6 8B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Number of queries

No-Share
Strict-Share

Sana

(b) Bandwidth utilization.

 0

 2

 4

 6

1 2 4 6 8

9
5

th
 %

 l
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of queries

No-Share
Strict-Share

Sana

(c) 95th % latency.

Figure 3.12: Degree of sharing impact over different number of concurrent queries.

common input streams even though their operators are different. All systems in the

following experiments applied WAN-aware operator scheduling. Thus, the differences

in the results were strictly based on the different execution plans generated by the Query

Optimizer. We compared Sana (which allows IN and IN-OP) against (1) No-Share, which

did not consider execution sharing, and (2) Strict-Share whose Query Optimizer only

allowed queries to share vertices if they shared the same inputs and operators (IN-OP

only). In contrast to Strict-Share, Sana allowed queries to share partial input streams.

Varying Number of Concurrent Queries

Figure 3.12 compares the three Query Optimizers over varying number of concurrent

queries. In the case of a single query execution, all the Query Optimizers generated the

same execution plan. However, as the number of queries increased Sana was able to

exploit a higher degree of sharing by allowing queries to partially share their executions.

This resulted in a lower bandwidth consumption and approximately 78% and 37% higher

throughput execution compared to No-Share and Strict-Share respectively (see Fig-

ures 3.12(b) and 3.12(a)). We can see from Figure 3.12(c) that allowing partial sharing

can also reduce the execution latency due to the higher bandwidth availability, which

provides a higher flexibility to the Job Scheduler to deploy the queries.

Figure 3.12(b) shows that although No-Share consumed 41% and 65% higher band-

width compared to Strict-Share and Sana respectively, it resulted in an overall lower

throughput. This indicated there was a large amount of redundant data being transmit-

ted over the WAN. The Strict-Share also consumed slightly more bandwidth compared

51

 0

 4000

 8000

 12000

 16000

4000 8000 12000 16000

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Input stream rate (records/s)

No-Share
Strict-Share

Sana

(a) Throughput.

 0

 20

 40

 60

4000 8000 12000 16000B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Input stream rate (records/s)

No-Share
Strict-Share

Sana

(b) Bandwidth utilization.

 0

 1

 2

 3

 4

4000 8000 12000 16000

9
5

th
 %

 l
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Input stream rate (records/s)

No-Share
Strict-Share

Sana

(c) 95th % latency.

Figure 3.13: Degree of sharing impact over different input stream rate.

to Sana but resulted in a lower throughput, which highlights the importance of (par-

tially) sharing common input streams even for different operators. From Figure 3.12(c),

we can also see that the overhead of the router operators that were added to route input

streams from remote sites was negligible (∼5%) even when they were not utilized, as

shown in the case with 1 query execution. Thus, in general the router operator can

reduce the redundancy in transmitting duplicate data over the WAN.

Varying Input Stream Rates

In this experiment, we evaluate the impact of the degree of sharing over different input

stream rates with 4 concurrent queries. Figure 3.13(a) shows that, as the input rate

increased, Sana resulted in a higher throughput while consuming lower bandwidth com-

pared to both No-Share and Strict-Share (Figure 3.13(b)). Furthermore, Sana was

able to reduce the overall execution latency compared to No-Share and Strict-Share,

similar to the effect of increasing the number of queries (Figure 3.13(c)). This shows that

(1) the proposed WAN-aware multi-query optimization scales as workload increases, and

(2) allowing queries to share common inputs even if they have different operators can

improve the overall performance and reduce wasteful bandwidth consumption.

3.7.3 WAN-Aware Sharing: Bandwidth Utilization vs. Performance

In the following experiments, we show the importance of WAN awareness in apply-

ing multi-query optimization in a wide-area environment to maintain high-performance

executions while reducing WAN bandwidth consumption (Section 3.5.1). We com-

pared Sana against (1) No-Share which did not exploit any execution sharing and

52

 0

 4000

 8000

 12000

1 2 4 6 8

T
h

ro
u

g
h

p
u

t
(r

e
c
o

rd
s
/s

)

Number of queries

No-Share
Max-Share

Sana

(a) Throughput.

 0

 20

 40

 60

1 2 4 6 8B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Number of queries

No-Share
Max-Share

Sana

(b) Bandwidth utilization.

 0

 2

 4

 6

1 2 4 6 8

9
5

th
 %

 l
a

te
n

c
y
 (

s
e

c
o

n
d

s
)

Number of queries

No-Share
Max-Share

Sana

(c) 95th % latency.

Figure 3.14: WAN-aware planning: bandwidth utilization vs. performance trade-off.

(2) Max-Share which allowed queries to share common executions but did not consider

the WAN bandwidth availability in sharing executions. In contrast to Sana, the lat-

ter always tried to exploit any sharing opportunity, which is essentially the traditional

multi-query optimization for a local environment. The main problem with maximizing

sharing without WAN awareness is that it may result in WAN bandwidth contention

among queries, which can degrade the performance of either or both the sharing and

the shared executions.

Figure 3.14(a) and Figure 3.14(c) show that Sana resulted in 35% higher throughput

and 23% lower latency compared to Max-Share, but consuming slightly higher band-

width. The performance gain achieved by Sana compared to Max-Share is because

Sana’s Query Optimizer prevented exploiting sharing opportunities that led to a band-

width contention which would degrade the overall performance. We can also see that

as the number of queries increases, the performance gap between Sana and Max-Share

also increases. This indicates that the WAN awareness in Sana resulted in less number

of contended links. Thus, there is a trade-off between minimizing WAN bandwidth

utilization and maximizing the overall performance of multiple query executions.

3.7.4 Potential Bandwidth Saving

In the following experiments, we observe the potential bandwidth saving from applying

multi-query optimization in the case where network bandwidth is not constrained. We

deployed Sana on a localized CloudLab3 environment where the available bandwidth

between nodes are higher than the rate of the data streams. In such a condition where

3 https://www.cloudlab.us/

53

 0

 10

 20

 30

 40

 50

 60

1 2 4 6 8

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Number of queries

No-Share
Strict-Share

Sana

(a) Bandwidth util. over number of queries.

 0

 10

 20

 30

 40

 50

0.2 0.3 0.4 0.5 0.6 0.7 0.8

B
a

n
d

w
id

th
 u

ti
liz

a
ti
o

n
 (

M
B

/s
)

Shared ratio

No-Share
Strict-Share

Sana

(b) Bandwidth util. over shared-ratio.

Figure 3.15: Saving WAN bandwidth consumption.

bandwidth is sufficient, reducing data transfer over network is still desirable since WAN

bandwidth is expensive in terms of monetary cost [?].

Figure 3.15(a) and Figure 3.15(b) show the average bandwidth consumption rate

over different number of concurrent queries and sharing ratio respectively. The sharing

ratio is defined as the percentage of vertices that are shared between queries. The aver-

age sharing ratio between the queries in Figure 3.15(a) was approximately 0.2 whereas

the number of concurrent queries in Figure 3.15(b) was set to 4. We can see from

both figures that Sana greatly reduced the bandwidth consumption as the number of

queries and the sharing ratio increased. Specifically, it resulted in up to 60% reduction

in bandwidth consumption rate compared to the sharing-agnostic approach. Thus ap-

plying multi-query optimization even in an unconstrained wide-area environment can

still reduce the bandwidth utilization and save monetary cost.

3.8 Related Work

Geo-Distributed Data Analytics Systems. Table 3.2 shows where Sana stands

in the world of geo-distributed data analytic systems. Iridium [?] proposes a WAN-

aware optimization that minimizes query execution latency for batch-oriented workloads

by proactively migrating input data prior to the arrivals of queries based on history.

Geode [?] also relies on recurring queries but focuses on minimizing WAN bandwidth

consumption by sending only the diff of input data over the wide-area network for

subsequent queries. In contrast to both approaches, Sana focuses on stream-oriented

54

Table 3.2: Geo-distributed data analytics systems
Systems Workload WAN-aware optimization Multi-query optimization

Iridium [?] Recurring Data and task placements prior to query arrivals N/A
Geode [?] Recurring diff or incremental data transfer over the WAN N/A
Clarinet [?] Batch WAN-aware query planning Multi-job scheduling
Tetrium [?] Batch Task scheduling over heterogeneous resources Multi-job scheduling
JetStream [?] Stream Data aggregation/degradation using data cube N/A
AWStream [?] Stream Profiling-based data degradation N/A

Sana Stream WAN-aware operator sharing and scheduling Execution sharing

workloads where most queries are long-running and consume data streams that are con-

tinuously being generated in real time. Furthermore, Sana does not make any assump-

tion on the query arrivals. None of these techniques support multi-query optimization.

Both Clarinet [?] and Tetrium [?] look at optimizing batch-oriented queries in a wide-

area environment. Specifically, Clarinet incorporates WAN awareness into the query

optimizer to choose a query execution plan based on inter-site bandwidth availability,

whereas Tetrium additionally considers the heterogeneity of computational resources

across sites in scheduling jobs. In addition to incorporating WAN-aware optimization

for single-query deployment, both of them consider optimizing multiple query executions

by batch-scheduling multiple queries rather than scheduling each query independently.

Their approaches, however, are not feasible for stream-oriented workloads. Furthermore,

they do not allow queries to share common executions and hence their techniques would

still result in a redundant data transmission and processing. In contrast, Sana can elim-

inate redundant executions and optimize multiple query executions in an incremental

manner, which is critical for long-running, continuous queries.

Recent attempts have also considered optimizing stream-oriented queries in a wide-

area environment. Photon [?] and Ubiq [?] address the fault tolerant aspect of geo-

distributed data analytics over continuous data streams. JetStream [?] handles WAN

bandwidth limitation by making a trade-off between output quality and performance,

which may not be applicable for queries that rely on exact results. AWStream [?] further

automates the degradation policies in JetStream based on the resource-accuracy profiles.

Heintz et al. [?] propose an online algorithm that trades timeliness and accuracy in the

context of windowed grouped aggregation. Pietzuch et al. [?] examine the problem of

operator placement on the open Internet environment. Although they related to Sana,

they mainly focus on optimizing individual query independently.

55

Others have also looked at optimizing different types of workloads in a wide-area

environment. Gaia [?] proposes a system that optimizes machine learning workloads in a

wide-area environment by identifying and eliminating any insignificant update over the

WAN. Monarch [?] focuses on geo-distributed graph analytics workloads by optimizing

existing graph-processing model to a wide-area environment.

Multi-Query Optimization. The problem of multi-query optimization has been ex-

tensively studied in databases [?, ?] and have been adopted for OLAP workloads [?,

?, ?, ?, ?] and later, data analytics [?, ?, ?]. Sana adopts the data-centric philosophy

with pipelining technique [?] to share common executions between streaming queries.

Although most of them are related to our work, they focus on a local environment

whereas Sana focuses on a wide-area environment with different bottleneck. We show

that applying traditional multi-query optimization in wide-area settings without WAN

awareness may lead to performance degradation.

Others have also examined the problem of multi-query optimization over continuous

data streams in streaming databases [?, ?, ?]. Seshadri et al. [?] propose an algorithm

to find an optimal execution plan with reduced search space. Rule-based [?] and sketch-

based [?] optimization have also been proposed for multiple queries over data streams,

and NiagaraCQ [?] addresses the scalability issue in applying multi-query optimization

for Internet Databases. Although our work is related, they are mainly concerned with

memory constraints since they focus on a single-server deployment.

Incremental Processing and Caching Systems. It is worth mentioning that our

work shares similarity with other work in incremental processing [?, ?] and caching sys-

tems [?, ?, ?, ?] since they also address the problem of redundant computation. However,

they are orthogonal to our work. The incremental processing technique can be applied

by each individual query by updating its state incrementally instead of computing from

the beginning [?]. However, this is application-specific. Caching intermediate hot data

also prevents performing redundant data processing, but it may not be applicable for

queries that rely on real-time data streams. Thus, these techniques can be used in

conjunction with our techniques.

56

3.9 Conclusion

In this chapter, we present Sana, a streaming analytics system that optimizes multi-

ple query executions in a wide-area environment. We demonstrate the opportunity of

applying multi-query optimization in the context of wide-area streaming analytics to

mitigate wasteful resource utilization in processing redundant operations and transmit-

ting duplicate data over scarce wide-area network bandwidth. We study different types

of sharing opportunities and propose a multi-query optimization that allows multiple

queries to incrementally share common executions in an online manner. We also ad-

dress the importance of network awareness in applying multi-query optimization in a

wide-area environment. We show that traditional WAN-agnostic multi-query optimiza-

tion may lead to performance degradation. The evaluation using a wide-area system

deployment across multiple geo-distributed EC2 data centers shows that Sana resulted

in 21% higher throughput while saving WAN bandwidth utilization by 33% compared

to a WAN-aware, sharing-agnostic system.

Chapter 4

WASP: Wide-area Adaptive

Stream Processing

4.1 Introduction

Wide-area stream processing systems typically comprise multiple edge clusters and data

centers connected by a wide-area network (WAN) [?, ?, ?, ?]. Such systems require low-

latency and high-throughput processing to extract timely insights from geo-distributed

data streams. However, ensuring a stable and high-performance execution of long-

running queries in a wide-area environment is challenging due to the highly dynamic

WAN bandwidth and unpredictable workload patterns. Studies have shown that WAN

bandwidth may change at an interval of minutes [?, ?], while Internet workload exhibits

strong variability, both temporally and spatially [?, ?]. Furthermore, stragglers and

failures are inevitable in large-scale distributed systems [?, ?, ?].

Existing work has addressed the importance of adaptability in distributed stream

processing systems, but has focused on addressing only computational bottlenecks in a

centralized cluster environment and hence, is WAN-agnostic [?, ?, ?, ?, ?]. As argued

by recent work, wide-area data analytics requires WAN-aware optimization due to the

fundamental differences in the environments [?, ?, ?]. This can significantly improve

the query execution time and/or reduce wasteful resource consumption by several orders

of magnitude. Early work in wide-area data analytics has focused on short-lived batch

processing and assumed that network bandwidth is relatively stable throughout the

57

58

runtime of queries [?, ?, ?], which is an invalid assumption for long-running streaming

queries. Others have addressed the importance of adaptability in wide-area streaming

analytics but force users to trade quality/accuracy for performance through aggrega-

tion, degradation, and statistical estimation [?, ?, ?]. We argue that these approaches

are application-dependent, and may not apply generally. For example, reducing a frame

rate may be applicable for some video analytics applications, but dropping data is

not tolerable for queries that require high accuracy such as fraud detection and billing

queries [?, ?]. Furthermore, they rely heavily on analysts’ expertise to explicitly specify

various degradation policies and involve extensive parameter tuning, making it cumber-

some in practice.

In this work, we rethink the adaptability property of wide-area stream processing

systems. Our goal is to allow queries to maintain low-latency execution while preserving

the quality of the results. Instead of immediately degrading data in the face of bottle-

necks, we propose a re-optimization adaptation approach that adapts the execution of a

query, and only consider data degradation as a last resort. There are several challenges

in re-optimizing a query execution in a wide-area environment. First, the system needs

to account for the limited and heterogeneous WAN bandwidth. Secondly, wide-area

dynamics may happen frequently and hence, any adaptation should be done with low

overhead. This is challenging in the case of stateful computation where the internal

query processing state may be geo-distributed. Thirdly, it is critical to ensure a stable

execution without over-allocating resources to avoid wasteful monetary cost.

To address the above challenges, we propose a resource-aware adaptation framework

called WASP (Wide-area Adaptive Stream Processing). WASP adapts queries at runtime

through a combination of multiple techniques: (1) task re-assignment, (2) operator scal-

ing, and (3) query re-planning. Both task re-assignment and operator scaling adapt the

physical execution of a query, while query re-planning adapts the logical plan. We show

that a combination of these techniques are generally applicable for different type of

queries. WASP can automatically determine how to adapt a query depending on the type

of dynamics. For example, WASP scales up a compute-constrained operator by allocating

additional resources within a site. On the other hand, it handles network bottlenecks

differently by scaling out the bottleneck operator across sites and distributing the work-

load across multiple network links. Furthermore, WASP can quickly recover from failures

59

and adjust any misconfiguration.

We further study the applicability, overhead, and benefits of different adaptation

techniques, and propose a practical approach to determine which adaptation action to

take based on the types of queries (stateless vs. stateful), bottlenecks (compute vs. net-

work), and optimization objectives. To ensure low-overhead adaptation, we propose a

network-aware state migration and a state partitioning technique when adapting queries

with stateful operators. We have implemented a WASP prototype on Apache Flink [?].

Experimental evaluation using the YSB benchmark [?] and a real Twitter trace demon-

strates that WASP can maintain low-latency execution without compromising quality and

with low overhead in the face of dynamics.

We summarize our contributions as follows:

• We propose several optimization-based adaptation techniques for wide-area stream-

ing analytics to handle various dynamics without sacrificing the accuracy/quality

of the results (Section 4.5).

• We qualitatively compare the applicability, overhead, and benefits between differ-

ent adaptation techniques, and propose a policy to determine which adaptation

to use depending on the types of queries, dynamics, and goals (Section 4.6).

• We further highlight the importance of network awareness to ensure an effective

and low-overhead adaptation (Section 4.5 and Section 4.6).

• We have implemented our adaptability techniques into a system prototype called

WASP over Apache Flink, and demonstrated that WASP can achieve low-latency

execution without sacrificing any data (Section 4.9).

4.2 Background & Motivation

4.2.1 Wide-area Streaming Systems

We consider a wide-area streaming system that spans multiple sites (edge clusters/data

centers) that are connected by WAN with diverse inbound and outbound bandwidth

and latency [?, ?, ?, ?]. A global Job Manager running in one of the sites provides

60

an interface for query submission, and it optimizes and deploys queries across multiple

sites. The inputs of a query can be generated or collected at any site.

Figure 4.1: Wide-area query execution pipeline.

We consider a streaming dataflow model [?, ?, ?]. Figure 4.1 shows the execution

pipeline of a typical streaming analytics query. A query is represented as a logical

directed acyclic graph of operators G = (V,E), where the vertices V correspond to

stream operators and the edges E refer to data flows between operators. The source

and sink vertices refer to operators that consume input streams and produce final results

from/to external systems respectively (e.g., display on a monitoring dashboard or store

the results to a file system and database).

Each query’s logical plan is optimized (e.g., pushing filter operators upstream to

reduce data rates) and translated into multiple physical plan candidates. A query’s

physical plan consists of one or more execution stages (jobs), each of which can run in

parallel as execution instances (tasks). The number of instances of each stage is typically

predetermined by the parallelism value in the configuration. The system will deploy the

tasks with WAN awareness to minimize query execution latency or WAN bandwidth

consumption [?, ?, ?, ?, ?]. A task continuously waits for input streams from one or

more upstream operators (except for source operators), processes them, and outputs

the results to one or more downstream operators (except for sink operators).

61

4.2.2 Wide-area Resource Constraints

Scarce and heterogeneous resources. Extracting real-time insights from large con-

tinuous data streams in wide-area settings is challenging due to the highly heterogeneous

and scarce WAN bandwidth [?, ?, ?, ?]. The emergence of Edge Computing comprising

small edge clusters further introduces additional heterogeneity [?, ?]. They typically

have limited computational resources and they are connected using the public Internet,

whose bandwidth is even more constrained, with an average of 7∼10Mbps [?].

 0

 50

 100

 150

 200

 0 4 8 12 16 20 24 28 32 36 40 44 48

B
a
n
d
w

id
th

 (
M

b
p
s
)

Time (30-minute interval)

Figure 4.2: WAN bandwidth variability from Oregon to Ohio EC2 data centers.

Resource and workload dynamics. Most of the work in adaptive stream processing

systems has focused on a cluster environment where the main source of bottlenecks is due

to the limited computational resources. They typically handle this problem by scaling

out bottleneck operators within a cluster [?, ?, ?, ?, ?]. In wide-area settings, network

bandwidth imposes additional dynamic [?, ?, ?]. We conducted a one-day measurement

of WAN bandwidth variation between 8 Amazon EC2 data centers (Oregon, Ohio,

Ireland, Frankfurt, Seoul, Singapore, Mumbai, and Sao Paulo). Figure 4.2 shows the

bandwidth variation between the Oregon and Ohio data centers. We can see that

the bandwidth has a high variation (25% to 93% deviation from the mean). Others

have also reported that the inter-data center network topology may change every 5-10

minutes [?, ?], supporting the dynamic nature of WAN bandwidth.

Studies have also reported that many Internet applications have variable workload

patterns, both temporally and spatially [?, ?]. For example, Twitter workload exhibits

strong spatial and temporal variations, with day hours having 2× higher workload

compared to night hours [?]. Thus, relying on a static deployment is a poor fit in such

a dynamic environment. This leads to performance degradation and wasteful resource

utilization during high and low workload periods respectively.

62

4.3 WASP Overview

In this section, we present the system overview of WASP. Figure 4.3 shows the WASP

system architecture. It consists of a Job Manager and multiple geo-distributed Task

Managers. The Job Manager consists of a Query Planner and a Scheduler that are

responsible for planning queries and deploying tasks respectively. We define the compu-

tational resources provided by each Task Manager using a computing slot abstraction,

each of which can handle exactly one task. Each Task Manager continuously monitors

and gathers its task’s performance metrics (e.g., processing latency and input/output

stream rates) through a Local Metric Monitor and reports them to the Global Metric

Monitor 1©. The Global Metric Monitor uses this information to diagnose unhealthy

execution or identify wasteful resource consumption 2© and asks the Reconfiguration

Manager to resolve it 3©.

Figure 4.3: System overview of WASP.

Modern distributed stream processing systems support stateful computation, where

each task tracks its processing progress as a state and periodically checkpoints it to a

persistent storage system (e.g., HDFS [?]) [?, ?, ?]. This allows a task to start/resume

its execution from the last checkpointed state when recovering from failure/adaptation.

Examples of state include intermediate aggregation results and topic-partition offsets

in Kafka [?]. Since tasks in wide-area streaming analytics are geo-distributed, their

states are naturally generated in a geo-distributed fashion. To reduce the overhead

63

Table 4.1: Descriptions of the used notations
Notation Description

G operator graph
V a set of stream operator
E a set of logical data flow between operators
m the total number of sites in the system (edge cluster/data center)

N [s] the total number of computing slots at site s
A[s] the total number of available computing slots at site s
Bs2

s1 available network bandwidth from site s1 to s2
ℓs2s1 network latency from site s1 to s2
β maximum bandwidth utilization threshold
p the parallelism/number of instances of an operator

p[s] the number of operator instances deployed at site s
U a set of upstream/predecessor an operators
D a set of downstream/successor an operators
λI the observed input rate of an operator
λP the observed processing rate of an operator
λO the observed output rate of an operator

λ̂I the actual/expected input rate of an operator

λ̂I the actual/expected processing rate of an operator

λ̂O the actual/expected output rate of an operator
σ the selectivity value of an operator

tadapt the time required to adapt an operator

of checkpointing large state over the WAN, WASP stores each state locally instead of

in a centralized location. When a task is migrated to a different site, the Checkpoint

Coordinator will first initiate a state migration 4© and only after the state transfer

completes, the task can resume its execution 5©.

4.4 Query Execution Model & Monitoring

We now look at how WASP models and monitors the runtime execution of a query to

identify bottlenecks. Table 4.1 summarizes the notations that we use in this chapter.

Runtime Monitoring

Each operator keeps track of its runtime execution metrics such as processing rate

(λP), output rate (λO), and the selectivity of the operator (σ) which is defined as the

ratio between the output rate and the processing rate. These metrics are periodically

64

reported to the Global Metric Monitor for diagnosis. Here, the execution metric of an

operator is computed based on the aggregate runtime information of all of its execution

instances/tasks over the past time interval.

λP =

p
∑

i=1

λP [i] λO =

p
∑

i=1

λO[i] σ =
λO

λP

We consider an operator execution to be healthy, i.e., unconstrained by the allocated

resources, if the two following conditions are satisfied:

1. The processing rate of an operator is equal to its input rate: λP = λI .

2. The input rate of an operator is approximately equal to the aggregated output

rates of its upstream operators U : λI ≈
∑

u∈U λO[u].

The first condition ensures that all tasks have sufficient computing power to process their

input streams, while the second condition ensures no network congestion in transmitting

data streams from its upstream operators. However, these conditions may not always

hold due to the dynamic nature of the actual workload and WAN bandwidth.

If λP < λI , this indicates that there is insufficient computing resources allocated

to the operator. This may happen due to the occurrence of stragglers or unpredictable

workload variation that is common in practice [?]. On the other hand, the second

condition may fail (λI <
∑

u∈U λO[u]) if the available network bandwidth between an

operator and its upstream operators is constrained or congested. This may happen

due to an increasing workload of the operator itself and/or the reduction of network

bandwidth availability caused by a change in the underlying network topology or band-

width contention with other executions. If either or both of these conditions fail, the

system needs to adapt the operator execution to maintain the low-latency execution

performance of the query.

Estimating the Actual Workload

To identify bottlenecks, modern distributed stream processing systems often use a back-

pressure mechanism where a bottleneck operator triggers a control-rate message to its

upstream operators to reduce the workload [?, ?]. In this case, the observed input and

65

output rates of an operator do not reflect the actual workload, i.e., the actual stream

rates from the source operators. Yet, to accurately determine the effective adaptation

action that can resolve the bottleneck, the system should rely on the actual workload

instead of the observed information. Thus, we estimate the expected input and output

rates of each operator based on the actual workload generated by the source operators

(λO[src]), which is computed recursively as follows:

λ̂P = λ̂I =







∑

u∈U λ̂O[u], if U 6= ∅

λO[src], otherwise λ̂O = σ · λ̂I

4.5 Optimization-Based Adaptation

Having discussed how we model the runtime execution of an operator and identify per-

formance bottlenecks, we now propose 3 different adaptation techniques to resolve wide-

area bottlenecks: task re-assignment (Section 4.5.1), operator scaling (Section 4.5.2),

and query re-planning (Section 4.5.3). We compare the 3 techniques and discuss WASP’s

adaptation policies later in Section 4.6.

4.5.1 Task Re-Assignment

Existing work has addressed the importance of WAN awareness in scheduling tasks

in wide area settings with the goal of minimizing query execution latency or WAN

bandwidth consumption [?, ?, ?]. However, they have mainly focused on optimizing

the initial task placement and do not consider re-evaluating it after the deployment. In

this case, the initial placement may become sub-optimal when the environment or the

workload has changed significantly. Note that, re-assigning tasks of a particular stage

does not affect the other stages nor change the query’s logical plan.

Resource-aware Task Placement

Most wide-area streaming analytics system incorporate WAN awareness in their task

placement algorithms based on the deployment of the predecessor (upstream) stages

since they typically schedule one-stage-at-a-time in a topological order [?, ?, ?, ?].

However, re-assigning the tasks of an already running stage without considering the

66

deployment of its successor (downstream) operators may result in a sub-optimal deploy-

ment because the task deployment of its successor stages rely heavily on the original

task placement of the operator. This may result in a cascading problem. To prevent this

issue, our task re-assignment algorithm considers the deployments of both the upstream

and downstream stages. Specifically, we compute the number of tasks to deploy in each

site (p[s]) by solving the following Integer Linear Program (ILP):

min

m
∑

s=1

p[s] · (ℓsu + ℓds),∀u,∀d (4.1)

s.t.
p[s]

p
· λ̂in

s 6=u < βBs
u,∀s,∀u (4.2)

p[s]

p
· λ̂out

s 6=d < βBd
s , ∀s,∀d (4.3)

0 ≤ p[s] ≤ A[s], ∀s (4.4)

m
∑

s=1

p[s] = p, p ≥ 1 (4.5)

Our goal is to minimize the network delay of transmitting data streams both from the up-

stream (u) and to the downstream (d) operators, which equivalently minimizes the aver-

age delay incurred by a particular stage. Constraints 4.2 and 4.3 ensure there is sufficient

network bandwidth to receive/send data streams from/to the upstream/downstream op-

erators. Constraint 4.4 ensures there are sufficient number of available slots in each site,

and Constraint 4.5 ensures that the system deploys all the tasks.

We include a maximum bandwidth utilization threshold, {β | 0 < β < 1}, in Con-

straints 4.2 and 4.3 for a few reasons. First, it provides a certain degree of stability in

the solution by providing bandwidth headroom to handle slight workload and bandwidth

variations. Secondly, the headroom makes the system more robust to mis-estimation in

measuring the actual inter-site bandwidth availability and data stream rates. Lastly,

the reserved bandwidth can be used to process events that are queued during the tran-

sitioning process when an execution is adapted. We set β = 0.8 in our deployment.

Network-aware Task Migration

If the system is able to find an alternative task placement, it may re-assign some of

the existing tasks. Those that can be run at the original sites do not need to be

67

migrated. For example, if the original placement is S = {s1, s2, s3, s4} and the new

placement is S′ = {s3, s4, s5, s6}, only (S − S′) = {s1, s2} need to be migrated to

(S′ − S) = {s5, s6}. When re-assigning tasks, the system will (1) temporarily halt the

execution, (2) instantiate new tasks at the new sites and terminate the old ones, and

(3) resume the execution. In the case of stateful operation (e.g., windowed grouped

aggregation and join), the system needs to re-distribute/migrate any computation state

before resuming the execution. Since the size of a state can be large in practice [?, ?],

migrating a state over a low-bandwidth network link may incur high state migration

time, making it impractical for frequent dynamics. As the major overhead of migrating

a task is determined by the slowest state migration time, we determine the mapping

from (S − S′) to (S′ − S) by solving a MinMax problem with the goal of minimizing

the slowest state migration: min max(|statex|
B

y
x

),∀x ∈ (S − S′),∀y ∈ (S′ − S). We show

in Section 4.9.5 that a network-aware state migration can significantly mitigate the

overhead of adapting a stateful operator execution.

4.5.2 Operator Scaling

Although task re-assignment is generally applicable for any type of operators, the al-

gorithm may not always be able to find a solution due to its constraint on the initial

operator parallelism (Constraint 4.5). Yet, determining the right optimal parallelism in

advance may not be feasible given the highly dynamic environment. Thus, we consider

(1) increasing the parallelism if an execution is constrained by the available resources,

and (2) decreasing the parallelism to reduce any wasteful resource consumption.

Scale Up/Out

We define scale up and scale out in wide-area settings as instantiating new operator

instances within a site and across sites respectively. In general, increasing parallelism can

handle computational bottlenecks since it reduces the work performed by each individual

task. However, scale up cannot resolve network bottlenecks while scale out can solve

this by distributing the workload of any overloaded network link across multiple links.

Figure 4.4 shows how scale up and scale out can handle computational and network

bottleneck respectively. When the system observes that a task’s processing rate is less

68

Figure 4.4: Scaling up/out operator within and across sites.

than its expected input rate 1©, it may allocate additional slots and launch more in-

stances. To prevent distributing large state over the WAN, the system will prioritize

launching the new tasks within the same site 2©. 3© shows a scenario where the band-

width from an upstream task u to Site A is constrained. To reduce the load of the

constrained link, the system can instantiate a new task at Site B and distribute the

load across 2 links: u → A and u → B 4©. If the operator is stateful, this requires

distributing the state across the two sites. Although the example only shows inbound

bandwidth contention, scale out can also handle outbound bandwidth contention.

When scaling up/out an operator, the system needs to determine the scale factor,

i.e., the increase in parallelism. We compute the scale factor based on the operator’s

execution model proposed in Section 4.4. Specifically, we compute the new parallelism

of a bottleneck operator p′ based on the ratio between the actual/expected input rate

and the operator’s processing rate. This is similar to the technique proposed by DS2 in

handling computational bottleneck in a cluster-based stream processing system [?]:

p′ =
⌈ λ̂I

λP

· p
⌉

This equation gives the minimum parallelism value that can effectively resolve the

bottleneck. Once the system has computed the new parallelism, it will determine the

placement of the tasks by solving Equation 4.1. In the case of scale out, it is com-

puted as the ratio between the stream rate that cannot be handled over the bandwidth

availability. In general, increasing the parallelism can handle network bottleneck by

distributing the data stream over multiple network links, i.e., λ
p′

< λ
p
as p′ > p, and

hence, this can reduce the workload that needs to be transmitted to each network link.

69

Scale Down

A system may over-allocate resources to a particular job due to several reasons: mis-

configuration, pessimistically reserving extra resources to handle peak workload, or as a

result of scaling out/up an operator. This results in wasteful resource utilization. If the

system identifies such a problem, it should scale down some of the underutilized tasks.

To determine which tasks to scale down, we prioritize scaling down tasks that are not

co-located with their upstream/downstream tasks to reduce the inter-site bandwidth

consumption. However, the system needs to ensure the bandwidth to/from any of the

sites is higher than the input/output rate after the scaling.

Determining the scale down factor is challenging since it will increase the workload

to the remaining tasks. Furthermore it is hard to predict the future availability of the

workload. Aggressively scaling down an operator may result in a workload spike if the

workload increases after the scale down. To ensure a stable execution, we gradually

reduce the parallelism by 1 per iteration. In every iteration, the system needs to ensure

that any of the remaining tasks is not constrained, i.e., every task should have sufficient

bandwidth and processing capacity to consume the additional workload (relayed data

streams) from the terminated tasks. The system will observe its stability and may

further scale down the operator in the subsequent iteration as needed.

4.5.3 Query Re-Planning

While task re-assignment and operator scaling focus on adapting the physical deploy-

ment of a query, we further consider adapting the logical plan itself. Consider an

example in Figure 4.5 which shows 2 different plans for the same query. It consumes

input streams from 4 sources that are located at: A, B, C, and D, and joins them using

a full hash join, which is commutative. A WAN-aware Query Planner may choose the

first plan if the bandwidth is sufficient since it consumes less bandwidth (70MB/s for

the first plan, and 90MB/s for the second plan). However, if the bandwidth between

Site C and Site A is constrained, the Query Planner may opt for the second plan. This

illustration shows that the optimal plan depends heavily on the runtime information

when the query is deployed [?]. Thus, the Query Planner may consider adapting the

query plan when the environment has changed significantly [?].

70

Figure 4.5: Different query execution plans result in different deployments.

To determine the optimal deployment of a query, the Query Planner and the Sched-

uler need to jointly optimize the query by evaluating different combinations of logical

and physical plans. To avoid computing all possible combinations (that is NP-Hard),

we rely on a heuristic cost-based estimation. It first applies any optimization that is

independent of the environment (e.g., pushing filter operation upstream) and then eval-

uates multiple plans with different aggregation ordering. We only consider the ordering

of aggregation operators since they are typically the ones that involve cross-site data

transmission. The Scheduler will compute the optimal task placement for each plan and

select the combined plan-placement pair with the lowest estimated delay.

Re-planning Stateful Execution

The main challenge in re-planning a query is in preserving the processing state of a

stateful operator. Changing the query plan of a stateless execution can be done by

simply replacing the old execution with a new execution. However, in the case of

stateful execution, the new execution must restore the state maintained by the previous

execution. Although the Query Planner guarantees that different plans will output

the same results, switching plans in the middle of an execution may not provide this

guarantee because different plans may have different stateful operators with different

state semantics. For example, the state of σ(A ⊲⊳ B) may not be compatible with the

state of σ(B ⊲⊳ C) since they may have different schema. Thus, the state of σ(A ⊲⊳ B)

cannot be recovered by the operator instances of σ(B ⊲⊳ C).

71

To continue the progress from the old execution without losing any state, our Query

Planner will only consider plans that comprise common sub-plans covering the stateful

operators. For example, both Plan 1 and Plan 2 in Figure 4.5 exhibit a common sub-

plan on σ(C ⊲⊳ D). Thus, the new instances of σ(C ⊲⊳ D) in the second plan can

fully recover the states maintained by the previous plan. However, if σ(A ⊲⊳ B) is

also stateful, changing from Plan 1 to Plan 2 may not be feasible unless the query

can tolerate a certain degree of accuracy/quality loss. Another way to switch query

plans for stateful execution is if the operator maintains a short and finite state where

reconfiguration can be done at the end of the state interval. For example, in the case

of a windowed grouped aggregation with a tumbling window, this can be performed at

the end of the window when the state is re-initialized. This is similar to the adaptation

during the coordination interval in the batch synchronous processing (BSP) model [?, ?].

Re-evaluating both the logical and physical plans of a query typically results in a

better adaptation than re-optimizing only its physical plan. However, the former is

computationally expensive. Furthermore, query re-planning also has limited applicabil-

ity for queries that comprise stateful operators. Thus, to preserve the accuracy of the

results when re-planning a stateful execution, we only consider alternative plans that

exhibit common sub-plans involving the stateful operators.

4.6 WASP’s Adaptation Policy

In this section, we qualitatively compare 4 different adaptation techniques: (1) task

re-assignment, (2) operator scaling, (3) query re-planning, and (4) data degradation.

We then present the policy on how WASP determines which adaptation technique to use

based on several factors.

4.6.1 Adaptability Technique Comparison

Table 4.2 shows a qualitative comparison between different adaptation techniques. Both

task re-assignment and operator scaling are generally applicable for any type of operators

that can be parallelized whereas query re-planning has limited applicability for queries

that comprise stateful operators since their states may not be compatible with the

72

Table 4.2: Qualitative comparison between different adaptation techniques.
Technique Adaptation Applicability Granularity Overhead1 Quality loss

Task re-assignment Task placement General Stage Low No
Operator scaling Operator parallelism General Stage Low No
Query re-planning Query plan Specific Query High No2

Data degradation Degradation policy Specific Query Low Yes

operators of a different plan. In contrast, data degradation is application- and algorithm-

dependent and may not be applicable for queries that require high accuracy/quality.

The granularity of task re-assignment and operator scaling is on a stage level, but

the latter is more flexible since it is not constrained by the initial operator parallelism.

On the other hand, query re-planning typically results in a better adaptation since it

re-optimizes the whole execution pipeline. However, it comes at the expense of high

overhead since it needs to replace the entire execution. The granularity of data degra-

dation depends heavily on the policies [?, ?]. For example, in video analytics, users

can specify different frame rates (e.g., 30 and 60 FPS) and fidelity (e.g., 50% and 75%).

Lastly, task re-assignment and operator scaling do not affect the output while degrading

data may reduce the output’s quality.

4.6.2 Determining Factors

Determining the right optimal adaptation is complex and may not be feasible since it

depends on a lot of factors. Thus, we propose a heuristic approach that considers (1)

the type of bottlenecks, (2) the type of operators, (3) overhead, and (4) the type of

dynamics. Figure 4.6 shows WASP’s adaptability decision.

1. Type of bottlenecks. To handle computational bottlenecks, WASP allocates

additional resources and scales up the bottleneck operator. It will first try to

scale the operator within the same site and only consider scaling it to remote sites

if the resources are not available since the latter will incur additional network

delay and WAN bandwidth consumption. On the other hand, if the execution

is constrained by the network bandwidth, it further considers the type of the

operator, i.e., stateless or stateful.

1 Excluding inter-site state migration overhead.
2 Yes, if the state is not compatible or can be ignored by the new plan.

73

Figure 4.6: Determining which adaptability action.

2. Type of operators. In the case of stateless execution, WASP will re-optimize

the whole execution pipeline: both the logical and physical plans, since the only

overhead is in finding such a better combination. In the case of stateful execution,

query re-planning may not always be feasible (as discussed in Section 4.5.3). Thus,

WASP will first try to re-assign the existing tasks and only scale the operator if it

cannot find an alternative placement with the given parallelism or the adaptation

overhead is higher than a specific threshold (tadapt > tmax). However, WASP may

limit the number of additional tasks to scale per iteration to prevent resource

hoarding or over-allocation, and may further choose to re-evaluate the query plan

if the parallelism has exceeded the threshold (p′ > pmax).

3. Overhead. WASP estimates the adaptation overhead based on the slowest state

migration time: tadapt = max(|statex|
B

y
x

),∀x,∀y, where x and y are the source and the

destination sites respectively. If the overhead is too high, WASP will scale out the

operator from p to p′. This can reduce the overhead through state partitioning.

Since most stream operators balance their workload among their tasks [?], the

average state size per task after the scaling is |state|
p′

< |state|
p

, given that p′ > p.

Hence, tadapt can typically be reduced as the size of the state that needs to be

migrated is reduced. In practice, tmax can be set based on the frequency of the

dynamics, so that tmax < the frequency for the system to progress.

4. Type of dynamics. So far, we have focused on addressing short-term dynam-

ics. However, WASP can also be extended to handle long-term dynamics (e.g.,

daily workload shift [?]). This type of dynamics usually follows a specific pattern

74

and can be predicted. Thus, WASP will handle this differently by periodically re-

evaluating the query plan in the background. How to accurately model/profile

the dynamics itself is out of the scope of this work.

4.7 Discussion & Assumptions

• Re-optimize or degrade? Data degradation has been widely used to handle

bottlenecks in wide-area streaming analytics and video analytics [?, ?, ?, ?]. We

believe that this approach is complementary to our work, and can be used to-

gether with our re-optimization-based adaptation. For example, if maintaining

high accuracy is a priority, the system may prefer re-optimizing the execution to

degrading the data. On the other hand, if the query can tolerate a certain degree

of inaccuracy, the system may first degrade the data and start re-optimizing the

query once it has reached the minimum accuracy threshold. Operator scaling will

also be preferable when recovering from failures since dropping a large number of

events may result in significant quality loss. Furthermore, operator scaling can

also handle misconfiguration. Thus, both techniques are complementary to each

other and their applicability depends on the query itself.

• Transient workload spikes. In this work, we focus on dynamics that lass

longer than a few seconds. Re-optimizing a query execution to handle very short

workload spikes may leave the system unstable because the workload may have

already changed when the query is adapted. Thus, WASP ignores transient workload

fluctuations that happen only for a very short period.

• Homogeneous compute power across slots. WASP abstracts the computa-

tional resources using computing slots, similar to the approach adopted by many

distributed stream processing systems [?, ?, ?]. Since, the performance of most

wide-area streaming analytics queries is predominantly determined by the inter-

site data transmission, we hide the heterogeneity across slots and only consider

the heterogeneity across sites based on the number of available slots per site.

• Balanced event partitioning. A stream operator may partition its output

to multiple downstream tasks. For clarity reason, we assume that the output

75

stream is evenly distributed across tasks, which is common for most operators [?].

However, our proposed techniques are not limited by this assumption and can

be integrated with other stream partitioning schemes. Note that, although we

consider even stream partitioning across tasks, we do not make any assumption

on the input data distribution.

4.8 Implementation

We have implemented a WASP prototype on Apache Flink [?] by (1) implementing a net-

work monitoring module (WAN Monitor), (2) incorporating WAN awareness in planning

queries and scheduling tasks, and (3) implementing an adaptability module that peri-

odically gathers tasks’ runtime information every 10 seconds, diagnoses any unhealthy

execution and wasteful resource utilization, and adapts them. We override the default

Flink’s scheduling algorithm by plugging in our WAN-aware task placement algorithm

that solves the ILP problem using the Gurobi optimization tool [?]. We also generate

multiple plans for each submitted query with different ordering of aggregation opera-

tors. For example, in the case of aggregating 3 data streams: A, B, and C, the system

will generate 4 plans with different aggregation orders: (A ⊕ B ⊕ C), ((A ⊕ B) ⊕ C),

(A⊕ (B ⊕ C)), and (B ⊕ (A⊕ C)).

4.9 Experimental Evaluation

We evaluated WASP using an emulated testbed derived from a real wide-area system

deployment. It consisted of 16 nodes: 8 edge nodes and 8 data center nodes. Each edge

node was configured with 2-4 slots/node and each data center node was configured with

8 slots/node. A slot was configured with 1 CPU and 1GB of RAM. To mimic the ac-

tual wide-area system deployment, we limited the pair-wise network bandwidth between

sites and introduced network delay using a tc limiter tool. The network connections

of the data center nodes were initially configured based on the average of a 1-day mea-

surement of network bandwidth between 8 Amazon EC2 data centers: Oregon, Ohio,

Ireland, Frankfurt, Seoul, Singapore, Mumbai, and Sao Paulo. On the other hand, the

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
D

F

Bandwidth (Mbps)

Edge

Data Center

(a) Bandwidth distribution.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300

C
D

F

Latency (ms)

Edge

Data Center

(b) Latency distribution.

Figure 4.7: Inter-site network distribution. Edge connections only consider nearby sites.

connections between the edge nodes were configured based on the actual public Inter-

net network whose bandwidth varied from 7-14Mbps [?]. Figure 4.7 shows the network

bandwidth and latency distributions between the nodes. We set β = 0.8, pmax = 3, and

a monitoring interval of 40 seconds to allow any adapted query to stabilize.

Our experiments address the following questions:

• Are the proposed adaptation techniques (task re-assignment, operator scaling, and

query re-planning) generally applicable for different types of queries (stateless and

stateful) and dynamics (workload and network) (Section 4.9.2)?

• How do task re-assignment, operator scaling, and query re-planning compare with

each other (Section 4.9.3)?

• How does WASP perform in a wild environment where workload variation, band-

width changes, and failures may happen unpredictably (Section 4.9.4)?

• How does WASP mitigate the overhead of migrating/distributing state in wide-area

settings (Section 4.9.5)?

4.9.1 Methodology

Query and Dataset. To demonstrate the generality of our technique, we evaluated

WASP using the following 3 different queries (see Table 4.3 for details):

1. Advertising Campaign from Yahoo! Streaming Benchmark (YSB) [?] which mon-

itors relevant advertisements related to specific campaigns every 10 seconds. To

77

Table 4.3: WASP query details.
Application State Size Operators Dataset

Advertising Campaign <10 MB filter, map, window, join Synthetic data
Top-K Topics ∼100 MB filter, map, union, window, reduce Twitter trace [?]

Event of Interests 0 MB filter, union, project Twitter trace

prevent potential bottleneck in Redis and Kafka (e.g., partition mismatch), we re-

place all I/O operations with in-memory operations and cache intermediate results

using an in-memory data structures.

2. Top-K Topic Detection on a replayed Twitter trace. The query aggregates the top

10 most popular topics for each country over a period of 30 seconds. It consists

of 2 different states: the source’s offset and the intermediate aggregation results.

3. Event of Interests on a replayed Twitter trace. This query simply filters out events

based on one or more attributes (e.g., language, topic, country of origin) and it

does not maintain any internal state (stateless).

The YSB data were synthetically generated and distributed evenly across the 8 edge

locations. On the other hand, the Twitter trace (collected from Twitter Streaming

APIs [?]) was distributed based on the geographic information in each tweet. Thus, the

latter covers the spatial and temporal distributions of actual events. Each operator was

configured with p = 1 and we set a checkpointing interval of 30 seconds.

Metrics. We consider 2 main metrics in our experiments:

1. Execution Delay. The delay is measured as the average event latency which is the

difference between the time an event is emitted at the sink and the time it was

generated by the external source. In the case of windowed grouped aggregation,

the event generation time is set to the maximum event time of all events within a

particular window (the latest event within a window) [?].

2. Processing Ratio. The processing ratio is computed as the ratio between the

observed processing rate and the expected processing rate. A ratio of 1 indicates

that the query is able to process all the events, while a ratio of < 1 indicates that

the query is constrained by the allocated resources. This is more general than an

accuracy metric [?, ?] since the latter is algorithm-specific [?].

78

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

D
e

la
y
 (

s
e

c
o

n
d

s
)

Time (seconds)

No Adapt Degrade Re-opt

(a) Average execution delay over time.

 0.5

 1

 1.5

 0 300 600 900 1200 1500

re-assign

drop

scale out

drop

P
ro

c
e

s
s
in

g
 r

a
ti
o

Time (seconds)

No Adapt Degrade Re-opt

(b) Processing ratio over time.

Figure 4.8: YSB execution under workload and bandwidth dynamics.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

D
e

la
y
 (

s
e

c
o

n
d

s
)

Time (seconds)

No Adapt Degrade Re-opt

(a) Average execution delay over time.

 0.5

 1

 1.5

 0 300 600 900 1200 1500

re-assign

drop

scale out

drop

P
ro

c
e

s
s
in

g
 r

a
ti
o

Time (seconds)

No Adapt Degrade Re-opt

(b) Processing ratio over time.

Figure 4.9: Top-K execution under workload and bandwidth dynamics.

4.9.2 Adapting to Wide-area Dynamics

We initialized the input stream rate at each source to 10,000 events/second at t = 0 and

introduced dynamics every 5 minutes. Specifically, we first increased the rate to 20,000

events/second at t = 300, and decreased it back to 10,000 events/second at t = 600. To

see the effect of network bandwidth variation, we halved the bandwidth of every link at

t = 900 and restore it at t = 1200. We compare our re-optimization-based approach, (1)

Re-opt, against (2) No Adapt which did not adapt to dynamics, and (3) Degrade which

dropped late events in case of insufficient resources. We set the SLO to 10 seconds for

Degrade. Figure 4.8, Figure 4.9, and Figure 4.10 show the average delay and processing

ratio of the 3 queries respectively.

1. [300 ≤ t < 600]: We see from Figure 4.8(a), Figure 4.9(a), and Figure 4.10(a) that

the delay of No Adapt increased continuously by up to 2-3 orders of magnitude as

79

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

D
e

la
y
 (

s
e

c
o

n
d

s
)

Time (seconds)

No Adapt Degrade Re-opt

(a) Average execution delay over time.

 0.5

 1

 1.5

 0 300 600 900 1200 1500

re-assign

drop

scale out

drop

P
ro

c
e

s
s
in

g
 r

a
ti
o

Time (seconds)

No Adapt Degrade Re-opt

(b) Processing ratio over time.

Figure 4.10: Event Interest execution under workload and bandwidth dynamics.

the workload increased because some network links could not sustain the workload.

This shows in the reduction of the processing ratio from 1 to ∼0.86 (Figure 4.8(b),

Figure 4.9(b), and Figure 4.10(b)). The processing ratio of Degrade also dropped

to ∼0.86 but it was able to maintain the delay within the SLO by dropping late

events, which in practical scenario may affect the result’s accuracy. In contrast,

Re-opt was able to maintain low-latency processing without dropping any event

(maintain the average processing ratio to ∼1) by re-assigning the bottleneck tasks

to different locations at t = 380. The processing ratio of the YSB and Top-

K momentarily dropped since the executions were suspended for approximately 2

and 10 seconds to migrate the states (Figure 4.8(b) and Figure 4.9(b)). Notice that

the delay of Degrade increased to ∼8 seconds for the YSB case but it remained low

for the Top-K case. This was because the key distribution of the former was much

lower than the latter’s, making it more sensitive to late events when measuring

the event time of the windowed grouped aggregation operators.

2. [600 ≤ t < 900]: When the workload reduced at t = 600, Degrade stopped

dropping events and its processing ratio started to increase to 1. In the case of No

Adapt, the processing ratio temporarily increased > 1 indicating that the system

was consuming queued events from the previous interval.

3. [900 ≤ t ≤ 1200]: To see the effect of network bandwidth variation, we halved

the bandwidth capacity of all links at t = 900. We can see that the delay and

processing ratio have similar trends to the effect of increasing workload. However,

80

Re-opt took a different adaptation action by scaling out the bottleneck operator

instead of re-assigning the tasks since the adaptation module could not find a

single alternative link whose bandwidth was higher than the stream rate. We can

also see that operator scaling resulted in a faster convergence, taking advantage

of having more resources. Finally, the delay of the 3 queries dropped at t = 1200

when the bandwidth increased.

These results show that (1) the re-optimization-based adaptation can handle both

workload and bandwidth variations, (2) this is generally applicable for both stateless

and stateful executions, and (3) it can maintain low-latency execution without dropping

any event. For the rests of the experiments, we used the stateful Top-K query as our

workload since it is the best representation of an actual geo-distributed workload among

the 3 queries, and they have a similar trend.

4.9.3 Re-Assign vs. Scale vs. Re-Plan

Next, we compared task re-assignment, operator scaling, and query re-planning, in han-

dling a combination of workload and bandwidth variations independently. We intro-

duced dynamics every 5 minutes by varying the workload and bandwidth by a factor of

{1, 2, 2, 1, 1} and {1, 1, 0.5, 0.5, 1} respectively. We compared (1) No Adapt: which did

not adapt to dynamics, (2) Re-assign: which only handled dynamics by re-assigning

tasks, (3) Scale: which would first try to re-assign the tasks but might scale some oper-

ators if it could not find a solution, and (4) Re-plan: which re-evaluated the execution

plan based on the observed workload and resource availability. Both Re-assign and

Re-plan never changed the parallelism.

First, we can see from Figure 4.11(a) that all of the techniques that adapt the query

resulted in lower delay compared to No Adapt, highlighting the importance of adaptabil-

ity in handling dynamics. Secondly, Scale resulted in the lowest overall delay compared

to Re-plan and Re-assign, and Re-plan resulted in a lower delay for the majority of

the events (< 93rd percentile) with respect to Re-assign. Figure 4.11(b) breaks down

the delay of each technique for each interval. At t = 300, both Re-assign and Scale

re-assigned the tasks while Re-plan switched to another plan. All of them could handle

the the workload increase during this interval. However, when the available bandwidth

81

 0

 0.25

 0.5

 0.75

 1

 0.1 1 10 100 1000

C
D

F

Delay (seconds)

No Adapt

Re-assign

Scale

Re-plan

(a) Delay distribution.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500

re-assign

re-assign

re-plan

scale out

re-plan

scale downD
e

la
y
 (

s
e

c
o

n
d

s
)

Time (seconds)

No Adapt
Re-assign

Scale
Re-plan

(b) Average delay over time.

Figure 4.11: Comparison between the 3 techniques in handling dynamics individually.

decreased at t = 600, Re-assign was unable to find an alternative task placement since

it was constrained by the initial parallelism. In contrast, Scale was able to handle

this problem by acquiring 2 additional slots and scaling out the bottleneck operators.

Re-plan was also able to handle the problem by re-planning the query. However, Scale

resolved the bottleneck faster than Re-plan, taking advantage of the additional re-

sources. Lastly, Scale decreased the parallelism when the bandwidth availability had

increased at t = 1200 and some of the resources became underutilized.

Comparing Re-assign and Scale, we can see that dynamically adapting operator

parallelism can better handle bottlenecks with the expense of consuming more resources.

We can also see that re-optimizing both the logical and physical executions (Re-plan)

results in a more optimal adaptation than simply re-assigning tasks (Re-assign) with

the same parallelism, and hence the former is preferable whenever possible.

4.9.4 WASP in a Live Environment

In this experiment, we evaluate WASP in a live, trace-driven environment where we intro-

duced (1) network bandwidth dynamics based on a real pair-wise bandwidth variation

trace between 8 Amazon EC2 data centers which ranged from 0.51 to 2.36, and (2)

random workload patterns with a variation factor ranging from 0.8 to 2.4, and (3) a

failure at t = 540 by revoking all the computational resources and re-allocating them

after 60 seconds. We added failure in this experiment to see how WASP can scale a query

to quickly process queued events. Figure 4.12(a) shows the bandwidth and workload

variations. Here, we compared (1) WASP against (2) No Adapt and (3) Degrade. WASP

82

 0

 0.5

 1

 1.5

 2

 2.5

 0 300 600 900 1200 1500 1800

V
a
ri
a
ti
o
n
 f
a
c
to

r
(X

)

Time (seconds)

Bandwidth Workload

(a) Bandwidth and workload variations over time.

 0.01

 0.1

 1

 10

 100

 1000

 0 300 600 900 1200 1500 1800

D
e
la

y
 (

s
e
c
o
n
d
s
)

Time (seconds)

No Adapt Degrade WASP

(b) Average delay over time.

 0

 0.5

 1

 1.5

 2

 0 300 600 900 1200 1500 1800

P
a
ra

lle
lis

m
 c

h
a
n
g
e
s

Time (seconds)

No Adapt Degrade WASP

(c) Parallelism changes over time.

Figure 4.12: WASP’s adaptations to dynamics and failures.

could use any of the adaptation techniques: task re-assignment, operator scaling, and

query re-planning, depending on the condition discussed in Section 4.6.2.

Figure 4.12(b) and Figure 4.12(c) show the delay and parallelism changes over time.

We make a few observations here. First, WASP’s processing delay stayed close to 1 second

(similar to the unconstrained case) for most of the time except for some intervals. At

300 ≤ t < 540, there was a slight variation in the delay when WASP scaled out 2 of the

tasks to handle workload increases and bandwidth drops. At t = 640, WASP was able to

quickly handle the accumulated events after recovering from failure by scaling out the

bottleneck operators. It then gradually scaled down some operators after the workload

had reduced and the execution stabilized. Finally, it further scaled down the majority

of the additional tasks at 900 ≤ t < 1320 when the available bandwidth had increased.

83

 0

 25

 50

 75

 100

No Adapt WASP Degrade

P
ro

c
e

s
s
e

d
 e

v
e

n
ts

 (
%

)

Adaptation techniques.

(a) Average processed events.

 0

 0.25

 0.5

 0.75

 1

 0.1 1 10 100 1000

C
D

F

Delay (seconds)

No Adapt

WASP

Degrade

(b) Delay distribution.

Figure 4.13: Quality vs. delay trade-offs.

In contrast to WASP, the delay of No Adapt increased by more than 2 orders of

magnitude, especially after the execution recovered from failure since it was unable to

handle the queued events. Although Degrade could maintain the average delay within 1

second for most of the time, it had to sacrifice up to ∼24% of the events. This resulted

in an inaccurate result and hence, may not be tolerable for queries that require high

accuracy. In contrast, WASP could process all of the events while maintaining the low-

latency processing (Figure 4.13(a)). From Figure 4.13(b) we can see that WASP had a

longer delay tail distribution compared to Degrade. We observed that the majority

of the delay came from the monitoring process, the transitioning phase for migrating

states, and the processing of queued events after WASP recovered from failure.

These results show that (1) WASP can handle real-world dynamics and failures with-

out dropping any of the events, and (2) there is essentially a trade-off between the

re-optimization and degradation-based adaptation techniques in maintaining the qual-

ity/accuracy of the results and maintaining the low-latency processing.

4.9.5 Mitigating Adaptation Overhead

In the last set of experiments, we see how WASP can reduce the overhead of adapting

queries with large computation state. Specifically, we highlight the importance of net-

work awareness and the benefit of state partitioning in reducing the overhead. We break

down the overhead into 2 phases: (1) transition time: when the execution is suspended

for state migration, and (2) stabilizing time: the time needed to consume all queued

events that have been accumulating during the transition process. We highlight the

84

 0

 20

 40

 60

 0 100 200 300 400 500

D
e

la
y
 (

s
e

c
o

n
d

s
)

Time (seconds)

No Migrate

WASP

Random

Distant

(a) Execution delay over time.

 0

 50

 100

 150

 200

No
Migrate

WASP Ran-
dom

Distant

O
v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
) Transition

Stabilize

(b) Adaptation overhead.

Figure 4.14: Network-aware state migration.

importance of network-aware state migration in Section 4.9.5 and show the benefit of

state partitioning to further reduce the overhead in Section 4.9.5. In both experiments,

we controlled the size of the state that needed to be migrated.

Network-aware State Migration

To ensure low-overhead adaptation, WASP estimates the task migration overhead based

on the size of its state and the bandwidth availability between the initial site and the

new site. Migrating a state over the WAN may incur high overhead if the bandwidth

between the two sites is constrained. This is impractical for frequent dynamics that are

common in wide-area settings. In this experiment, we compared (1) WASP against (2) No

Migrate3 which did not migrate the state (equivalent to adapting stateless operators),

(3) Random: which ignored the bandwidth availability, and (4) Distant: which migrated

a state to a site. In any case, the system ensured that the destination site had sufficient

bandwidth to process the actual data stream and hence, the execution would eventually

stabilize. We fixed the state size to 60MB.

Figure 4.14(a) compares the effect of different state migration techniques to the

overall query execution delay. In any of the cases, the system started adapting the

query at t = 180. Here, we can see that No Migrate could quickly reduce the delay

without migrating the state. However, this resulted in an incorrect result or a loss in

accuracy. Comparing the other 3 techniques that maintained the state, we can see that

WASP resulted in the lowest delay during the adaptation phase.

3 Ignoring the state will result in a loss of accuracy in the result.

85

 0

 20

 40

 60

 80

0 32 64 128 256 512

9
5

th
 %

 d
e

la
y
 (

s
e

c
o

n
d

s
)

State size (MB)

Default

Partitioned

(a) Execution delay distribution.

 0

 100

 200

 300

0 32 64 128 256 512

O
v
e

rh
e

a
d

 (
s
e

c
o

n
d

s
)

State size (MB)

Stabilize

Transition

Stabilize-partition

Transition-partition

(b) Adaptation overhead.

Figure 4.15: Mitigating overhead through operator scaling and state partitioning.

Figure 4.14(b) shows the breakdown of the overhead. First, No Migrate incurred

∼0 transition time since it only redirected the data streams. There was a stabilizing

time and a slight increase in delay despite not migrating the state (similar to adapting

stateless operator) due to the queued events during diagnosis period. Reducing this

period may reduce the transition time but makes the system more susceptible to spikes

and miss-estimation. Secondly, WASP resulted in 41-56% lower overhead and 7-20 seconds

lower 99th percentile delay compared to Random and Distant respectively. The reason is

because the two WAN-agnostic approaches migrated state over constrained links, leading

to a higher adaptation time. These results show the importance of WAN awareness in

reducing the adaptation overhead in wide-area settings.

State Partitioning

In addition to network awareness, we observe how partitioning and distributing large

states across multiple links can further reduce the adaptation overhead. In this exper-

iment, we compared Default: which never partitioned the state, and Partitioned:

which would force the adaptation module to find an alternative placement (may involve

operator scaling) and partition the state whenever the estimated transition time ex-

ceeded a specific threshold. We varied the state size to {0, 32, 64, 128, 256, 512} MB

and set the maximum threshold to 30 seconds.

Figure 4.15(a) shows the 95th percentile delay over different state size. We can see

that the delay of Default increased as the state size increased. In contrast, Partitioned

could reduce the delay in the case of large state (256MB and 512MB). This is due to the

86

reduction in the adaptation overhead. Figure 4.15(b) shows the breakdown of the over-

head. In general, the overhead of adapting a query increased as the state size increased.

However, Partitioned was able to reduce this overhead by scaling out the bottleneck

operator and partitioning its state across multiple network links. This reduced the

overhead by more than 120 seconds (Figure 4.15(b)) which subsequently reduced the

average delay by 42 seconds (Figure 4.15(a)). These results highlight another benefit of

operator scaling in reducing the adaptation overhead.

4.10 Related Work

Wide-Area Data Analytics Systems. Wide-area data analytics systems can be

classified into two different groups based on their processing model: (1) batch analytics,

and (2) streaming analytics. Early work in wide-area data analytics has focused on

incorporating WAN awareness in scheduling jobs and placing tasks across multiple sites

with the goal of minimizing query execution latency [?, ?, ?] or saving WAN bandwidth

consumption [?]. However, they ignore the dynamic nature of wide-area environment.

Tetrium [?] considers dynamic resource availability but does not consider re-optimizing

jobs that have already been deployed. Turbo [?] has looked at dynamic query re-

planning for batch analytics but its techniques cannot be applied directly for long-

running streaming analytics queries.

Existing work has also looked at optimizing streaming analytics queries in wide-

area settings [?, ?, ?, ?, ?]. Pietzuch et al. [?] address the problem of network-aware

operator placement, and Sana [?] considers sharing common execution between queries.

However, they do not address workload/resource dynamics. Others have considered

the dynamic nature of a wide-area environment, but focused on trading latency, WAN

traffic, and accuracy. Heintz et al. [?] propose a technique to trade accuracy and delay

in the context of windowed grouped aggregation. Kumar et al. [?] proposes a TTL-

based approach that trades delay and WAN traffic for windowed grouped aggregation.

JetStream [?] allows users to specify different degradation policies with a data-cube

model. AWStream [?] relies on a profiling technique to determine which degradation

policy to take to ensure a certain degree of accuracy. We argue that these degradation

approaches are application-specific and they are complementary to our techniques.

87

Adaptability in Distributed Stream Processing Systems. There have been a

large body of work that address the importance of adaptability in cluster-based stream

processing systems [?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?]. However, they have focused

on addressing computational bottlenecks by scaling out tasks within a cluster. These

techniques cannot be directly applied to handle dynamics in a wide-area environment

due to the highly heterogeneous and limited network bandwidth.

Others have also looked at the importance of minimizing the adaptability overhead.

Drizzle [?] reduces the synchronization overhead for Bulk Synchronous Processing model.

Chi [?] relies on control mechanism to reduce the overhead of global synchronization.

ChronoStream [?] partitions and distributes large states across multiple nodes to allow

fast recovery. DS2 [?] predicts the scaling factor based on the expected processing rate

of each operator for dataflow model. Although these techniques are related to our work,

they do not account for network constraints. In wide-area environment, the overhead of

migrating large states over WAN is significantly higher than the partitioning overhead,

and hence our techniques focus on minimizing this overhead.

4.11 Conclusion

In this work, we rethink the adaptability property of wide-area stream processing sys-

tems and propose a WAN-aware adaptation framework, WASP, that allows queries to han-

dle dynamics without compromising quality. WASP adapts queries through a combina-

tion of multiple techniques: task re-assignment, operator scaling, and query re-planning.

WASP can automatically determine which adaptability action to take depending on the

type of queries, dynamics, and goals. WASP further incorporates network awareness to

mitigate the overhead of adapting queries in wide-area settings. Experimental evalu-

ation shows that WASP is able to handle wide-area dynamics with low overhead and

without sacrificing quality.

Chapter 5

Multi-Query Adaptation in

Wide-Area Streaming Systems

5.1 Introduction

Adaptability is an important property of stream processing systems to maintain the

low-latency and high-throughput execution of long-running streaming analytics queries

in the face of dynamics. In wide-area settings, dynamics are common not only because

of the workload variability but also the nature of wide-area network (WAN) bandwidth

that frequently changes. Furthermore, job arrivals/completions, stragglers, and failures

are inevitable in large-scale distributed systems.

Existing work has made a strong case for the importance of adaptability in wide-area

stream processing systems, but has mainly focused on answering the question of how to

adapt a query? [?, ?, ?, ?, ?] Specifically, their focus is on the trade-off between query

execution delay, accuracy, and WAN bandwidth consumption. As modern distributed

stream processing systems support multiple query deployments, concurrent query ex-

ecutions may compete for common limited resources, leading to a resource contention

problem. In such a condition, all of the queries will typically be marked as unhealthy,

i.e., they do not have sufficient resources to handle their workload, and they need to be

adapted. However, adapting all of the queries will result in multiple adaptation waves

that not only take a long time to complete but also incur large performance perturba-

tion. Instead, adapting only a subset of queries may be sufficient in most cases, as we

88

89

will show. In this case, the key questions are which queries need to be adapted and

how to adapt them. Answering these questions is challenging as different queries may

have different characteristics and requirements, and different adaptations may result in

different performance and resource consumption while incurring different overhead.

To address the above challenges, we propose Nako: a multi-query adaptation module

for wide-area streaming systems. Nako continuously monitors the resource requirements

of each query and identifies bottlenecks in the system. Instead of adapting each query

independently, Nako accounts for any resource contention among queries. It selectively

determines how to resolve the bottleneck and which queries need to be adapted. Nako

uses a notion of adaptation cost to make these decisions. The adaptation cost is com-

puted as a linear combination of an overhead cost and a resource consumption cost.

The overhead cost is computed based on the time required to adapt an execution, while

the resource consumption cost is computed based on the cost of acquiring additional

computing resources and the increase in network bandwidth consumption. Our moti-

vation is based on the observation that different adaptation actions may incur different

overhead and result in different resource consumption.

Since multiple queries may share common execution, recent work has shown the

benefit of applying multi-query optimization to eliminate redundant data processing and

duplicate data transmission over the network [?, ?, ?]. Yet, adapting an execution that

is shared by multiple queries may affect the execution performance of all of the queries.

Thus, Nako carefully considers the impact of adapting such an execution by computing

the overhead and resource consumption costs differently. It will then decide whether to

(1) adapt any other alternative query execution, (2) adapt the shared execution while

maintaining its sharing property, or (3) split the shared execution.

We have implemented Nako by extending the adaptation module in WASP (Chapter 4)

to consider multiple query executions in handling bottlenecks. We deploy Nako over an

emulated testbed that profiles real geo-distributed Amazon EC2 sites and evaluate Nako

using 8 streaming analytics queries over real geo-tagged Twitter trace. Experimental

evaluation shows that Nako can identifies a small set of queries to be adapted, resulting

in up to 2.1× lower average query execution delay and 2× faster adaptation in handling

bottlenecks compared to an existing technique that adapts queries independently.

90

(a) Workload. (b) Environment. (c) Initial deployment.

Figure 5.1: Initial deployment and workload of Query 1, 2, and 3.

5.2 Motivation

Recent work has addressed the importance of adaptability in wide-area stream pro-

cessing systems [?, ?, ?, ?]. However, much of the work has focused on adapting each

query individually irrespective to the other queries that may be competing for the same

resources. In this work, we consider the query adaptation techniques as discussed in

Chapter 4. We motivate through an example to show that adapting one-query-at-a-

time independently may result in a sub-optimal adaptation, incur unnecessarily high

overhead, or lead to wasteful resource consumption.

Figure 5.1 shows an example of three queries that are deployed over 4 different

sites (A, B, C, and D). The sites are connected by heterogeneous network bandwidth.

For clarity reason, we consider the inbound and outbound bandwidth between any

two sites to be equal (in an actual wide-area system deployment, the inbound and

outbound bandwidth capacities may vary). Here, the initial deployment of the three

queries consumes network bandwidth with a rate of 150MB/s (Figure 5.1(c)). Suppose

the network bandwidth from Site A to Site B that is shared by the three queries has

dropped from 90MB/s to 30MB/s, which causes a network bandwidth contention among

them. Upon identifying the network bottleneck, the system needs to determine which

queries need to be adapted and how to adapt them.

Figure 5.2 shows three different adaptation options that may be taken by the system.

Suppose the system decides to first adapt Query 1 by migrating its tasks that are located

at Site B to Site D in order to avoid the congested network link (Option 1). This will

91

Figure 5.2: Different adaptations result in different network consumption and overhead.

resolve the network bottleneck for Query 1. However, the system will observe that the

executions of Query 2 and Query 3 are still constrained and they need to be adapted.

Suppose, the system decides to adapt Query 2 next. This will resolve the network

bottleneck for Query 2. Yet, the system still needs to further adapt Query 3 whose

execution is still constrained by the bandwidth availability between Site A and Site B.

Thus, Option 1 will adapt all the three queries in order to resolve the network bottleneck.

This adaptation option also increases the overall network bandwidth consumption of the

three queries by 20% (see the final deployment of Option 1 in Figure 5.2).

Alternatively, the system may decide to adapt Query 2 first, e.g., because it has the

highest SLO violation among the three queries (Option 2). After the adaptation, the

system will still diagnose Query 1 and Query 3 to be unhealthy since their executions

are still constrained by the available bandwidth. Thus, the system will further adapt

Query 3 and finally observe that Query 1 is no longer constrained. In this case, Option

2 results in one less adaptation while consuming less network bandwidth compared to

Option 1. Yet, if the system is aware of the network bandwidth contention among the

three queries, it may instead adapt Query 3 first (Option 3). In this case, we can see that

adapting only Query 3 is sufficient to resolve the bottleneck while consuming the same

92

overall network bandwidth as Option 2. Thus, the system no longer needs to adapt the

other two queries. If the overhead of adapting each of the queries is the same, Option

2 unnecessarily doubles the overhead while Option 3 triples the overhead. We later

generalize the policy to handle cases where different queries have different adaptation

overheads. This example illustrate that adapting queries independently may result in

unnecessarily high overhead and network bandwidth consumption.

5.3 Adaptation Cost

In this section, we propose a notion of adaptation cost, that is used by Nako to determine

which queries need to be adapted to handle resource contention bottlenecks among

multiple query executions. We discuss Nako’s adaptation mechanism and policy later in

Section 5.4. Adapting the execution deployment of an operator may have a drawback

of increasing the overall resource consumption and incurring high adaptation overhead.

Here, we define the overhead as the time required to transition from one execution

to another execution which includes the time for (1) suspending the current execution

and checkpointing any of its computation states, (2) migrating/distributing the states

to different locations for the new execution, and (3) starting the new execution. In a

practical scenario, increasing the resource consumption of a query typically corresponds

to increasing the overall analysis cost (in terms of monetary cost [?, ?]) while higher

overhead may result in a stale or inaccurate result. Thus, it is critical to ensure low

overhead and efficient resource utilization in adapting a query execution.

More formally, the adaptation cost (Cadapt) is computed as a linear combination of

the resource consumption cost (CR), and the overhead cost (CO):

Cadapt = αCR + (1− α)CO

Here, α is a weight factor that can be set based on the relative importance of the

two cost factors. Setting α = 1 focuses on the resource consumption cost and ignores

the adaptation overhead, while setting α = 0 solely focuses on the overhead cost and

it ignores the resource consumption cost. We set α = 0.5 in our deployment which

balances the resource consumption and the adaptation overhead. We evaluate the effects

of varying α later in Section 5.5.

93

(a) Constrained execution. (b) Option 1: re-assign o3. (c) Option 2: scale o3.

Figure 5.3: Different adaptation actions may result in different resource consumption.

5.3.1 Resource Consumption Cost

In this work, we consider 2 different types of resource consumption: (1) the number

of computing slots used by a query, and (2) the total WAN bandwidth consumption.

Adapting a query execution in wide-area settings may consume additional computing

slots and increase the overall WAN bandwidth consumption. In a Cloud environment,

this may incur additional monetary cost as most Cloud providers charge users for both

the computing resource usage and any data transmission over the WAN.

Figure 5.3 shows an example that illustrates the case. If the bandwidth between

operators o1 and o3 is constrained (Figure 5.3(a)), the system may (1) re-assign o3 by

co-locating it with o1 to avoid competing for the constrained network link (Figure 5.3(b))

or (2) scale o3 to reduce the rate of the data streams transmitted over the constrained

network link (Figure 5.3(c)). Here, Option 1 and Option 2 will increase the overall

network bandwidth consumption by 11
2λ and 11

4λ respectively. Although Option 2

(scale out case) results in lower network bandwidth consumption, it incurs additional

computing cost for acquiring more computing resources.

In this work, we consider the resource consumption cost as a combination of both

the computing resource cost and the WAN bandwidth consumption cost. More formally,

the resource consumption cost (CR) is computed as follow:

CR =
(

∆p′[s] ·
N [s]

A[s]

)

+
(∆λ̂in

s 6=u

λ̂in
s 6=u

+
∆λ̂out

s 6=d

λ̂out
s 6=d

)

,∀s,∀u,∀d

Here, ∆p′[s] is the change to the number of operator’s tasks deployed at site s, N [s]

is the total number of slots at site s, A[s] is the number of available slots at site s,

and λ̂(in|out) is the inbound/outbound network bandwidth consumption from/to the

94

upstream/downstream operators (u/d). Here, the cost of acquiring additional com-

puting resources at each site is weighted based on the popularity/scarcity of the slots.

Intuitively, acquiring popular/scarce resources will incur higher cost. However, other

cost models (e.g., fixed cost based on the instance type of a slot) may also be incor-

porated. On the other hand, the network consumption cost is computed based on the

increase/decrease in the overall network bandwidth consumption (∆λ̂) from/to its up-

stream/downstream operators that are deployed on remote sites. Here, the network cost

can also be weighted based on the cost of transmitting data over the WAN if minimizing

the analysis expense is the priority.

5.3.2 Overhead Cost

Minimizing adaptation overhead in streaming analytics is critical as it may incur high

processing delay. Although the overhead of adapting an operator can be considered as

a one-time cost (in contrast to the resource consumption cost that is continuous), high

processing delay can significantly affect the timeliness and quality of the results. Thus, it

is imperative to ensure a low adaptation overhead, especially for frequent dynamics. In

wide-area settings, the main overhead of adapting an execution is typically in migrating

an intermediate processing state over the WAN since the state maintained by a stateful

operator can be very large in practice [?, ?] while WAN bandwidth is scarce. Thus,

we consider the state migration time as the major factor to the adaptation overhead.

Specifically, the overhead cost (CO) is computed as follow:

CO =
tadapt
tfreq

Here, tadapt is the total time required to adapt a query (including the suspension time and

state migration time) and tfreq is the adaptation frequency of a query, estimated based

on its historical statistics. Intuitively, normalizing the adaptation time with the adap-

tation frequency indicates the usefulness of the adaptation. Furthermore, frequently

adapting an execution will significantly affect its performance and result’s quality. This

can also be used as a consideration whether to adapt a query for short-term dynam-

ics if the overhead is too high. Similarly, this justifies the importance of adapting a

query execution with high overhead to handle long-term dynamics (e.g., daily workload

shift [?, ?]).

95

The adaptation time itself is computed as the slowest state migration time (if any)

since an operator can resume its execution only after all of its states have been migrated

to the sites where the new tasks have been deployed to:

tadapt = max
(|state|s2s1

Bs2
s1

)

,∀s1,∀s2, s1 6= s2

Here, s1 and s2 correspond to the initial site and the new site respectively, |state|s2s1 is

the size of the state that needs to be migrated from s1 to s2, and Bs2
s1 is the bandwidth

availability between the two sites.

5.4 Multiple Query Adaptation

This section presents how Nako handles resource contention among multiple query ex-

ecutions by considering the cost of adapting each of the queries. Although the compu-

tational resources are typically exclusively allocated to a particular query based on the

number of computing slots1 , the network bandwidth is typically shared by multiple

queries. Thus, network bottleneck may arise if the aggregated bandwidth demand of

a particular network link is higher than its available bandwidth. In this case, most

runtime monitoring systems will diagnose that all of the executions are unhealthy and

they need to be adapted. Instead of adapting all of the constrained executions, Nako

will try to adapt only a subset of the executions. This is often sufficient to resolve the

bottleneck. The main challenge here is to determine which queries need to be adapted.

5.4.1 Adaptation Flow

Figure 5.4 shows Nako’s adaptation process. Each operator periodically reports its run-

time performance metrics (e.g., processing rate, output rate, and backpressure status)

to the Metric Reporting module. A Resource Monitoring module continuously monitors

the available network bandwidth between sites and the number of available computing

slots at each site. Both the Metric Reporting and the Resource Monitoring modules

report any update to the Runtime Diagnosis, which in turn uses this information to

identify any bottleneck based on the execution model described in Chapter 4.4.

1 This limits the number of tasks that can be run on a particular machine, although the actual
hardware scheduling itself cannot be guaranteed.

96

Figure 5.4: Nako’s adaptation flows.

Which Queries to Adapt?

When the Runtime Diagnosis identifies a set of unhealthy operators θ, the Adaptation

Policy will determine how to adapt each unhealthy operator execution, whether to scale

the operator or simply re-assign the operator instances. It computes the cost of adapting

each operator (Cadapt[oi],∀oi ∈ θ) using the formulation presented in Section 5.3. It will

then sort the operators based on their adaptation cost values in ascending order and

let the Adaptation Trigger module adapt the operators. The Adaptation Trigger adapts

the operators in a greedy manner starting from the operator that incurs the lowest

adaptation cost (o1 ← θ.poll()).

After adapting an operator, the Adaptation Trigger will re-evaluate the adaptation

decisions for any other bottleneck operators that share resources with o1 since the deci-

sions were computed based on the availability of the resources before adapting o1, and

hence the pre-computed adaptation decisions may no longer be valid or necessary. How-

ever, any other operators that do not share resources with o1 can be adapted in the same

iteration. Note that, adapting o1 will not cause any computational or network bottle-

neck to the other executions since there is no slot sharing across different operators and

any adaptation decision, whether task re-assignment (Section 4.5.1), operator scaling

(Section 4.5.2), or query re-planning (Section 4.5.3), ensures no bandwidth contention.

97

Pruning Module

After adapting some of the bottleneck operators {o1, · · · , on}, Nako will update the

availability of the resources and check whether there are other operators still need to be

adapted (θ − {o1, · · · , on}). Some of the operators may no longer need to be adapted

if any of the prior adaptations have released the previously contended resources. For

example, if both o1 and o2 are competing for the same network bandwidth, B, with

a rate of λ[o1] = 0.6B and λ[o2] = 0.7B respectively, both queries may be identified

as unhealthy by the Runtime Diagnosis since the aggregate resource demand is higher

than the network bandwidth availability (0.6B + 0.7B = 1.3B > B). However, if o1 is

migrated to a different site, o2 no longer needs to be adapted as migrating o1 has freed

up 0.6B of the bandwidth. In this case, the Pruning Module will remove o2 from θ. The

Adaptation Policy will re-compute the adaptation action for the remaining operators,

following the same process.

5.4.2 Adapting Shared Execution

In some cases, multiple queries may exhibit a common sub-execution, whether in con-

suming common input data streams or even performing similar operations [?, ?, ?]. This

is especially common for queries that are submitted by different groups within the same

organization that analyze the same data for different purposes. For example, user-access

logs from multiple CDN servers may be analyzed for billing, advertisement, and security

purposes. Chapter 3 presents a multi-query optimization technique that allows queries

to share their common operations in order to reduce the overall resource consumption

of processing and transmitting duplicate data in the context of wide-area streaming

analytics. Yet, this introduces new challenges to the adaptation policy since adapting

an execution that is shared by multiple queries may affect the execution performance

of all of the queries.

Adapting a directly shared operator. Figure 5.5 shows an example where the

execution of Query 1 is shared with Query 2. When a bottleneck happens directly on

the operator that is shared by the two queries (o2), this will affect the execution of both

queries. There are several adaptation options to resolve the bottleneck (Figure 5.5(a)).

First, the adaptation module can simply adapt the operator without considering its

98

(a) Bottleneck on a directly shared operator. (b) Bottleneck on an indirectly shared operator.

Figure 5.5: Bottlenecks on a shared query execution.

shared property. This, however, will disrupt the execution of all of the queries that

are sharing the operator. Furthermore, this may affect the execution performance of

some of the queries. For example, if the bottleneck in Figure 5.5(a) is caused by the

limited network bandwidth between o2 and o6, migrating o2 to a different site may

increase the execution latency of Query 1 despite its individual execution is not being

constrained by the resources. Alternatively, the adaptation module may split the shared

execution by instantiating a new instance of o2 for Query 2. However, this will increase

the overall resource consumption, both for acquiring additional computing resources and

increasing the network bandwidth consumption for transmitting duplicate data streams.

Thus, there is an overhead vs. resource consumption trade-off between maintaining the

shared property of an execution and splitting the execution.

Adapting an indirectly shared operator. Bottlenecks may also happen on an

execution that is indirectly shared by multiple queries. Figure 5.5(b) shows an example

where bottleneck occurs on one of the Query 2’s operators (o6) whose upstream operators

are partially shared with Query 1. This will affect the execution of the shared operators

as o6 will trigger a backpressure to its upstream operators to reduce the workload.

The backpressure control messages will be propagated to the source operators. In this

case, both src2 and o2 will observe the backpressure from o6 and reduce their workload.

Hence, this will affect the overall execution of Query 1. Although adapting o6 should not

affect the performance nor the resource consumption of Query 1, adapting o6 requires

suspending the execution of all of its upstream operators, including those that are

99

shared by Query 1. Thus, the execution of Query 1 will need to be suspended despite

its execution is not being constrained.

Cost of Adapting a Shared Execution

Based on the above observation, we can see that adapting a shared execution while

maintaining its sharing property may affect the runtime executions of all queries that

are sharing the execution. Specifically, it needs to suspend the executions of all of the

queries. Thus, the overhead cost (CO) of adapting a shared execution should be com-

puted as the aggregate overhead of adapting all of the sharing queries Q. Furthermore,

adapting a directly-shared operator may also increase the overall network bandwidth

consumption (CR) of all of the sharing queries. Thus, the costs of adapting a shared

operator are computed as follows:

CO =
∑

q∈Q

CO[q] CR =
∑

q∈Q

CR[q]

Alternatively, the adaptation module may determine to split the shared execution.

This will reduce the overall overhead cost (CO) as it does not need to suspend the

executions of the other queries, but it tends to increase the resource consumption cost

(CR) both for acquiring additional computing resources and transmitting duplicate data

over the network. Thus, Nako carefully determines whether to maintain the sharing

property of a bottleneck execution or split the execution based on the overall adaptation

cost of the two adaptation options. Specifically, it chooses the adaptation action that

incurs the lowest overall cost:

min
(

Cshare
adapt , C

split
adapt

)

In general, the overhead cost will dominate the overall cost of adapting a shared ex-

ecution while the resource consumption cost will dominate the overall cost of splitting a

shared execution. Thus, adapting a shared execution typically incurs higher adaptation

cost compared to adapting a non-shared execution. Thus, Nako often prioritizes adapt-

ing non-shared executions whenever possible. Intuitively, this reduces the number of

executions that needs to be suspended while ensuring efficient resource consumption.

100

5.5 Experimental Evaluation

Environment and System Setup. We evaluated Nako using an emulated testbed

derived from a real wide-area system deployment. It consisted of 16 nodes: 8 edge nodes

and 8 data center nodes. Each edge node was configured with 2-4 slots/node and each

data center node was configured with 8 slots/node. Here, a slot was configured with 1

CPU and 1GB of RAM. We capped the pair-wise network bandwidth between the nodes

and introduced network delay using a tc limiter tool based on the actual measurement

of inter-site network connections among the Amazon EC2 data centers.

We have implemented Nako as an extension to WASP’s adaptation module on Apache

Flink (Chapter 4). While WASP directly updates any unhealthy execution, Nako deter-

mines whether adapting only a subset of the queries is sufficient. It relies on the query

adaptation cost to prioritize which queries need to be adapted. In this experiment, we

enabled 30 seconds monitoring interval for the Runtime Diagnosis to determine whether

a particular execution is constrained. We also set α = 0.5 in all of the experiments, un-

less explicitly specified. This balances the overhead cost and the resource consumption

cost in computing the adaptation cost.

Dataset and Queries. We have implemented 8 location-based streaming analytics

queries over real geo-tagged Twitter trace that was collected from Twitter Stream-

ing APIs in December 2015. We scaled the playback rate to approximately 12,000

tweets/second to reflect the actual tweet rate. The tweets were distributed across the

8 edge nodes based on the geographic information embedded in each tweet. Thus, the

trace covers the actual distribution of real geo-distributed workload. Table 5.1 shows

the details of the queries. Each query keeps track of the source offsets of all of its input

stream sources, which indexes the last event that has been successfully consumed by the

query. Any processing state (e.g., source offsets and aggregation results of windowed

grouped aggregation operators) are periodically checkpointed to a local file system every

30 seconds.

In addition to the data stream itself, some of the queries also rely on data dictionar-

ies that are statically stored in a specific site. Examples of such data dictionaries include

user demographic information, stopword list, and sentiment dictionary. The user de-

mographic information was randomly generated and stored in one of the data center

101

Table 5.1: Nako query details.
ID Description Operators

Q1 Get user demographic information map, window, join, project
Q2 Filter language specific tweets map, filter, union, project
Q3 Find top 10 popular events in each country map, filter, union, window, reduce
Q4 Get the user sentiment in each country map, filter, union, window, join, reduce
Q5 % of Christmas-related events per country map, filter, union, window, reduce
Q6 Monitor the workload of each site map, window, reduce
Q7 Find top 10 popular topics per age group map, filter, union, window, join, reduce
Q8 Find top 10 popular topics per gender map, filter, union, window, join, reduce

nodes. The stopword dictionary was distributed across the data center nodes based on

the commonality of the language in each location. Lastly, the sentiment dictionary was

collected from the SenticNet [?] dataset, and it was used for sentiment analysis query.

Each query subscribed to 4 input stream sources located at the edge nodes and stored

its final result locally.

Metrics. We consider 3 main metrics in our experiments:

1. Execution Delay. The delay is measured as the average event latency which is the

difference between the time an event is emitted at the sink and the time it was

generated by the external source. In the case of windowed grouped aggregation,

the event generation time is set to the maximum event time of all events within a

particular window (the latest event within a window) [?].

2. Constrained Time. The total amount of time a query spends under a constrained

condition, i.e., its execution latency is higher than its average execution latency

when the execution is not constrained.

3. WAN Bandwidth Consumption. The total rate of inter-site network bandwidth

consumed by a query execution.

5.5.1 SLO vs. Cost-based Adaptation

We first evaluated Nako’s adaptation policy in determining which queries to adapt based

on the adaptation cost metric. As the baseline, we compared Nako against an SLO-based

adaptation policy (SLO for short) that was proposed in Henge [?]. It prioritizes adapting

queries based on an SLO violation metric. In this experiment, we defined the SLOmetric

102

 0.1

 1

 10

 100

 0 60 120 180 240 300 360 420

D
e
la

y
 (

s
e
c
o
n
d
s
)

Timeline (second)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

(a) Nako’s query execution delay. Q2 and Q7 were adapted.

 0.1

 1

 10

 100

 0 60 120 180 240 300 360 420

D
e
la

y
 (

s
e
c
o
n
d
s
)

Timeline (second)

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

(b) SLO’s query execution delay. Q1 and Q5 were adapted.

Figure 5.6: Per query execution delay over time.

based on the relative increase in the overall query execution delay with respect to the

average query execution delay when the execution was not constrained. Thus, queries

that had higher increase in delay would have higher priority for being adapted first. For

fairness reason, we enabled the pruning module of both approaches, allowing them to

adapt only a subset of the bottleneck queries.

In this experiment, we introduced network bottleneck by increasing the event rate of

each input stream source by 25% at t = 120, which caused some of the network links to

be contended by the queries. Figure 5.6(a) and Figure 5.6(b) compare the overall delay

increase per query between Nako and SLO respectively. We made a few observations

here. First, we observed that both Nako and SLO adapted only two queries although

there were six queries that were marked as unhealthy by the system. Specifically, Nako

adapted Q2 and Q7 while SLO adapted Q1 and Q5. Thus, adapting only a subset of the

bottleneck executions was sufficient to resolve the bottleneck.

Secondly, we observed the effect of adapting different queries. The adaptation deci-

sions made by Nako were based on the estimated time required to migrate intermediate

states across different sites, which in this case took ∼0 and 6 seconds for Q2 and Q7

103

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 d

e
la

y
 (

s
e
c
o
n
d
s
)

Query #

Unconstrained Nako SLO

(a) Overall query execution delay.

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8

C
o
n
s
tr

a
in

e
d
 t
im

e
 (

s
e
c
o
n
d
s
)

Query #

Nako SLO

(b) Time spent under constrained conditions.

Figure 5.7: Per query delay and constrained time comparison between Nako and SLO.

respectively. Here, adapting Q2 incurred 0 adaptation overhead as its execution is state-

less: Q2 only needed to filter out language specific tweets and hence did not need to

store any intermediate processing state. On the other hand, Q7 maintained an interme-

diate processing of the total tweet counts per topic per age group. In contrast to Nako,

SLO instead adapted Q1 and Q5 since they had the highest increase in delay among

the contending queries. In this case, adapting Q1 and Q5 incurred 7 and 13 second

state migration time respectively. Although adapting Q1 and Q5 eventually resolved

the bottleneck, it significantly increased the overall execution delay of Q5. Specifically,

it resulted in 2.1× higher overall query execution delay compared to the execution delay

of Q5 in Nako (Figure 5.7(a)).

Thirdly, comparing the execution performance of the other non-adapted queries

between Nako and SLO, we can see from Figure 5.7(a) that Nako was able to maintain

the overall delay closer to the unconstrained condition whereas the SLO resulted in a

higher overall execution delay (especially for Q5). Figure 5.7(b) breaks down the time

spent by each query under the constrained condition. Here, we can see that Nako

resulted in a lower overall constrained time even for queries that were not adapted,

explaining the lower overall execution delay it achieved in Figure 5.7(a).

104

These results show that (1) adapting only a subset of queries can be sufficient to

handle bottlenecks caused by resource contention among multiple query executions,

and (2) the decision on which queries need to be adapted can affect the overall query

execution performance. Specifically, we show that Nako can handle bottlenecks more

efficiently compared to the SLO-based adaptation, resulting in a lower overall delay and

lower constrained time.

5.5.2 Resource Consumption vs. Overhead Trade-off

We next evaluated the overhead vs. resource consumption trade-off in adapting a query

execution. Specifically, we varied the α value in estimating the adaptation cost (Sec-

tion 5.3) from 0, 0.5, and 1. At one extreme, setting α = 0 would minimize the overhead

cost without considering the resource consumption cost, while α = 1 would minimize

the resource consumption cost regardless of the overhead. In general, setting α = 0.5

balances the resource consumption and the overhead cost factors in adapting a query

execution. In this experiment, we deployed all of the 8 queries concurrently and intro-

duced dynamics by randomly varying (1) the bandwidth capacity by a factor of 0.7 to

0.9, and (2) the workload by 0 to 20% every 2-5 minutes.

Figure 5.8 compares the overall execution performance and the network bandwidth

consumption of different α values. First, we can see from Figure 5.8(a) and Figure 5.8(b)

that α = 0 resulted in a lower delay and lower constrained time compared to α = 1.

However, we can also see from Figure 5.8(c) that α = 0 consumed higher network

bandwidth that α = 1, especially for Q3 and Q4 (27% and 25% additional bandwidth

respectively), whose operators were scaled in α = 0. Comparing α = 0.5 with the two

extreme cases, we can see that α = 0.5 followed the same adaptation decision as α = 0

for Q3 but, followed the adaptation decision made by α = 1 for Q4. In the former

case, α = 0.5 sacrificed higher network bandwidth consumption for query execution

performance due to the high overhead of adapting Q3 which would have resulted in a

similar increase in query execution delay and constrained time with α = 1. On the

other hand, it decided not to scale Q4 since the resource consumption cost of adapting

Q4 was higher than the overhead cost.

From these results, we can see that there is a clear trade-off between minimizing

the overhead cost and the resource consumption cost. The decision on which cost to

105

 0

 1

 2

 3

 4

1 2 3 4 5 6 7 8

E
x
e
c
u
ti
o
n
 d

e
la

y
 (

s
e
c
o
n
d
s
)

Query #

0 0.5 1

(a) Average query execution delay.

 0

 50

 100

 150

 200

 250

1 2 3 4 5 6 7 8

C
o
n
s
tr

a
in

e
d
 t
im

e
 (

s
e
c
o
n
d
s
)

Query #

0 0.5 1

(b) Constrained time.

 0

 10

 20

 30

1 2 3 4 5 6 7 8

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

/s
)

Query #

0 0.5 1

(c) WAN bandwidth consumption.

Figure 5.8: Overhead vs WAN bandwidth consumption trade-off.

minimize depends on the optimization goals. For example, if ensuring the timeliness

result of a query is critical, the adaptation module should give a higher weight for the

overhead cost. On the other hand, if the resource consumption incurs high monetary

cost or the analyst is constrained by her resource budget, she may give a higher weight

on the resource consumption cost. In general, balancing the weight between the two

cost factors may be desirable in most cases since it considers the benefits between the

two optimization goals.

5.5.3 Shared Query Adaptation

In the following set of experiments, we evaluate Nako’s adaptation policy in adapting an

execution that is shared by multiple queries. Specifically, we observe how Nako decides

106

 0

 1

 2

 3

 4

[0,0] [0,30] [30,0] [0,90] [90,0] [30,90] [90,30] [90,90]

split Q1 split Q2 split Q1 split Q2

E
x
e
c
u
ti
o
n
 d

e
la

y
 (

s
e
c
o
n
d
s
)

State size / task [Q1,Q2] (MB)

Q1 Q2

(a) Average delay.

 0

 10

 20

 30

 40

 50

[0,0] [0,30] [30,0] [0,90] [90,0] [30,90] [90,30] [90,90]B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n
 (

M
B

/s
)

State size / task [Q1,Q2] (MB)

(b) WAN bandwidth consumption.

Figure 5.9: Adapting/splitting shared execution over different combination of state size.

whether to maintain the sharing property of a shared execution or split the execution

based on the overhead and the additional resource consumption trade-off between the

two adaptation decisions. Here, we considered two queries: Q1 and Q2 that partially

shared 2 out of 4 of their input stream sources. We fixed the size of the state maintained

by each task of the two queries to 0, 30, and 90 MB. We first deployed the queries to

run for 5 minutes and then introduced network bottleneck by halving the outbound

network bandwidth used by the shared operators.

Figure 5.9(a) and Figure 5.9(b) show the overall execution delay and the network

bandwidth consumption rate of the two queries over different combinations of state

sizes. We observed that if the two executions were stateless, i.e., adapting the shared

execution did not require migrating any intermediate processing state, Nako would not

split the shared execution, as doing so would not affect the overhead cost but increased

the resource consumption cost from transmitting duplicate data stream. In this exper-

iment, we can also see that Nako did not split the shared execution for the [0,0], [0,30],

[30,0], and [90,90] cases since the resource consumption cost of splitting the execution

107

over-weighted the overhead cost. In the case of [90,90] splitting the execution would

only benefit one of the queries but it would increase the overall resource consumption

cost from acquiring additional computing slot and increasing the network bandwidth

consumption for transmitting duplicate data streams for the two executions. On the

other hand, Nako split the shared execution for the other cases, resulting in approxi-

mately 30% higher bandwidth consumption compared to the initial shared execution

(Figure 5.9(b)). However, Nako was able to maintain the low query execution delay by

adapting only one of the queries that incurred the lower adaptation overhead, without

disrupting the execution of the other query. For example, in the case of [30, 90], Nako

split Q1 instead of Q2 as the former incurred lower overhead.

These results show that (1) there is an overhead vs. resource consumption trade-off

between maintaining and splitting a shared execution, (2) Nako’s decision on whether to

maintain/split a shared execution depends on the overhead differences among all of the

sharing queries, and (3) Nako is able to selectively determine which query to adapt when

splitting a shared execution that minimizes the overall adaptation overhead, resulting

in a lower overall query execution delay.

5.6 Related Work

Wide-area Streaming Analytics. Recent work has addressed the importance of

adaptability in wide-area streaming analytics. Heintz et al. [?] proposed a technique

that considers the trade-off between accuracy and timeliness in the context of windowed

grouped aggregation. Kumar et al. [?] focus on delay vs. WAN consumption trade-off by

using a TTL-based approach for a windowed grouped aggregation. JetStream [?] allows

users to specify different degradation policies with a data-cube model. AWStream [?]

relies on a profiling technique to determine which degradation policy to take to ensure a

certain degree of accuracy. Lastly, Jonathan et al. [?] propose an adaptation technique

that adapts the execution itself to maintain the accuracy/quality of the result. Although

they are related to this work, they have mainly focused on a single query adaptation.

In contrast, we focus on multiple query adaptation, specifically in determining which

queries that need to be adapted in the presence of bottlenecks. Hence, their work is

orthogonal and complimentary to our work.

108

Adaptability in Distributed Stream Processing Systems. There have been a

large body of work that address the importance of adaptability in cluster-based stream

processing systems [?, ?, ?, ?, ?, ?, ?]. However, they have focused on addressing com-

putational bottlenecks in a cluster-based distributed stream processing systems. These

techniques cannot be directly applied to handle dynamics in a wide-area environment

due to the highly heterogeneous and limited network bandwidth. Furthermore, they

have mainly focused on adapting a single query execution. Recently, Henge [?] was

proposed to address the problem of adapting streaming analytics queries in a multi-

tenant environment. However, they have focused on maintaining the execution within

SLO threshold and left the SLO definition to the analysts. In this work, we show that

the system should also consider the overhead and resource consumption overhead when

adapting a query, which is critical in a resource-constrained environment.

Others have also looked at the importance of minimizing the adaptability overhead.

Drizzle [?] reduces the synchronization overhead for Bulk Synchronous Processing model.

Chi [?] relies on control mechanism to reduce the overhead of global synchronization.

ChronoStream [?] partitions and distributes large states across multiple nodes to allow

fast recovery. DS2 [?] predicts the scaling factor based on the expected processing rate

of each operator for dataflow model. Although these techniques are related to our work,

they do not account for network constraints. In wide-area environment, the overhead of

migrating large states over WAN is significantly higher than the partitioning overhead,

and hence our techniques focus on minimizing this overhead.

5.7 Conclusion

In this chapter, we propose Nako: an adaptation technique for multi-query executions

in the context of wide-area streaming analytics. Nako can selectively adapt only a small

number queries to resolve bottlenecks. It uses an adaptation cost metric to determine

which queries to adapt, which is computed based on the overhead and the changes

in resource consumption of an adaptation. We have implemented Nako by extending

WASP’s adaptation module. Experimental evaluation shows that Nako can identifies a

small set of queries to be adapted, resulting in 2.1× lower overall query execution delay

in handling bottlenecks compared to a technique that adapts queries independently.

Chapter 6

Future Research Directions

6.1 Machine Learning for Data Analytics Systems

Resource management, cluster scheduling, and query optimization in data analytics

systems are imperative to the overall resource utilization and execution performance

of data analytics queries. The majority of these techniques, however, often result in

various trade-offs. For example, most cluster scheduling techniques have been designed

focusing on their generality but may sacrifice the optimality of the outcomes. In the

context of geo-distributed data analytics, most job scheduling and adaptation policies

often involve a trade-off between query execution time, the accuracy/quality of the

results, and the overall resource consumption. Improving the outcome of these policies

for a specific application or workload often requires various parameter tuning that may

be cumbersome in practice.

Recent attempts have proposed the idea of incorporating machine learning tech-

niques to improve the outcome of general-purpose techniques for specific applications,

whether in the context of cluster scheduling [?, ?, ?] or data management systems [?,

?, ?]. We believe that a similar approach should be considered in geo-distributed data

analytics systems. For example, to handle runtime dynamics in the context of wide-area

streaming analytics, the adaptation module may rely on the historical workload profile

and the resource-accuracy profile of each query to further improve the adaptation pol-

icy that is tailored for a specific query. Another, more specific application of applying

machine learning techniques to our work is to automatically learn the best adaptation

109

110

method and adjusting the overhead-resource consumption trade-off in computing the

adaptation cost. This can be applied on a per-query basis as different queries may have

different characteristics, workload profiles, and SLOs. Thus, incorporating machine

learning techniques to geo-distributed data analytics systems can further improve the

overall query execution performance and system resource utilization.

6.2 Pushing Data Analytics Further to the Edge

The emergence of Internet of Things (IoT) applications in recent years has led to the

recent developments of Edge Computing comprising of small edge devices located at the

edge of the network [?, ?, ?, ?, ?, ?]. In turn, this trend has resulted in recent attempts

for pushing data analytics further to the edge for localized processing, whether to edge

machines/Cloudlets, mobile/IoT devices, or a combination between them [?, ?]. This

not only improves the timeliness of the result but also improves privacy. However,

deploying data analytics queries in such a dispersed environment imposes additional

challenges due to the unique characteristics of the environments:

• Heterogeneous computational resources. The available compute capacity

across edge devices is typically very limited. They typically consist of only a

handful number of processing units as opposed to hundreds or thousands of com-

puting machines in large cluster/data center environment [?, ?]. Furthermore, the

processing hardware across edge devices is even more heterogeneous. For example,

some edge devices may not be equipped with GPUs that can significantly improve

the performance of image/video processing. Thus, deploying analytics queries in a

dispersed edge environment should account for the availability and heterogeneity

of computational resources since they can significantly impact the overall query

execution performance.

• Public Internet connectivity. The network connections between edge nodes

and public Cloud or other edge nodes typically use public Internet that has even

more constrained bandwidth than the inter-data-center connectivity. Recent re-

ports from Akamai and Microsoft have shown that the public Internet connections

between edge nodes or private Clouds to public Clouds have an average of less

111

than 10Mbps [?, ?]. Thus, deploying analytical jobs in this environment should

account for the strict network limitation.

• Co-location between data analytics jobs and user-facing applications.

While analysts can typically provision a large number of resources in large clusters

for their analytical jobs to run in isolation, this may not be feasible in a dispersed

edge environment due to the limited availability of the resources at the edge.

Furthermore, these resources are typically used by other user-facing services that

directly interact with end-users. Thus, the system should treat the user-facing

services as a first class citizen and ensure that any analytical job does not disrupt

these services. Furthermore, the co-location of these applications may introduce

additional dynamics as Internet workload and user-oriented services are highly

dynamic and unpredictable in practice.

In the future we plan to address the above challenges and consider adapting our

multi-query optimization (Chapter 3) and adaptability technique (Chapter 4) to support

data analytics at the edge. Applying multi-query optimization that merges common

executions between queries can be beneficial in such a resource-constrained environment

since it will reduce the overall resource requirements by removing any redundant data

processing and duplicate data transmission over low-bandwidth network links. However,

sharing common execution between queries should not violate any of the queries’ SLOs

and it has to preserve the privacy of the data. Since most edge clusters/devices have

limited resources, any query execution running on such devices is prone to dynamics

such as workload variation. Yet, most edge analytics applications are latency- and

accuracy-sensitive. Thus, it is critical for edge analytics systems to be adaptive in order

to preserve the timeliness and quality requirements of the applications regardless of

dynamics.

Chapter 7

Conclusion

Recent years have seen an increasing amount of data that are generated in a geo-

distributed fashion. These data vary from user-generated information (e.g., tweets and

photo/video uploads), sensor readings from IoT applications, and distributed log files

(e.g., transaction logs and CDN server logs from multiple geo-distributed servers). Col-

lectively analyzing these geo-distributed data is crucial for many operational tasks.

Researchers from industries and academia have proposed a system model, called geo-

distributed data analytics system, to efficiently analyze geo-distributed data. It com-

prises multiple computing machines/nodes that are distributed across multiple sites

(data centers or edge clusters) and they are connected by wide-area network (WAN).

The main goal of such systems is to provide a low-latency processing while ensuring a

stable and reliable query execution.

Achieving a high-performance execution of various geo-distributed data analytics

applications/queries is challenging for a few reasons. First, different applications may

have different processing models and optimization goals. In this case, the system should

be able to handle various types of applications while satisfying each application’s re-

quirements. Secondly, wide-area resources, both computing capacities across sites and

wide-area network bandwidth, are scarce and highly heterogeneous [?, ?]. Thus, the sys-

tem should account for these limitations in optimizing and scheduling queries in order to

achieve high-performance query execution while ensuring efficient resource utilization.

Lastly, wide-area environment is highly dynamic [?]. This dynamism includes unpre-

dictable workload variation, network bandwidth fluctuations, occurrence of stragglers,

112

113

and failures that are inevitable in large-scale distributed systems. Thus, geo-distributed

systems should gracefully handle these dynamics in order to ensure a stable and reliable

query execution.

This thesis addresses the above challenges faced by geo-distributed data analytics

systems. We highlight our contributions as follows:

• Firstly, we propose a resource management system, called Awan, that addresses

the problem of resource sharing between multiple data analytics frameworks in

a wide-area environment. The goal of Awan is to elastically adapt the resource

allocation of each framework while allowing each framework to schedule its jobs

with high locality. We propose a lease-based resource sharing model and a vari-

ant of a delay scheduling technique that allow a framework scheduler to improve

its locality scheduling by providing the future availability of computational re-

sources. Experimental evaluation using a real geo-distributed system deployment

shows that Awan outperforms existing cluster-based resource sharing techniques

by increasing the number of tasks that can be scheduled locally by up to 28%,

which improves the overall query execution time.

• Secondly, we explore the benefits of incorporating multi-query optimization in the

context of wide-area streaming analytics. Our goal is to efficiently utilize the

limited wide-area resources while ensuring high performance query execution. We

propose a network-aware multi-query optimization technique, called Sana, that al-

lows queries to share their common executions and eliminate any redundant data

processing. Since most streaming analytics queries are long-running, our pro-

posed technique optimizes multiple queries in an online manner by allowing new

queries to share their executions incrementally without disrupting existing query

executions. We further highlight the importance of WAN awareness in applying

multi-query optimization, both in planning and scheduling multiple queries. We

show that applying traditional multi-query optimization without WAN awareness

may degrade the overall query execution performance. Experimental evaluation

using a real wide-area system deployment across geo-distributed EC2 data centers

shows that Sana results in 21% higher throughput while saving WAN bandwidth

utilization by 33% compared to a WAN-aware, sharing-agnostic system.

114

• Thirdly, we address the importance of adaptability in wide-area streaming analyt-

ics to handle various wide-area dynamics. Such dynamics include unpredictable

workload variations, network bandwidth fluctuations, stragglers, and failures. Our

goal is to maintain a stable, reliable, and low-latency query execution while provid-

ing efficient resource utilization. We propose a WAN-aware adaptation framework,

WASP, that allows queries to handle bottlenecks without compromising quality.

WASP adapts queries through a combination of multiple techniques: (1) Task re-

assignment: which re-assign the placement of operator instances to avoid network

bandwidth limitation, (2) Operator scaling: which dynamically scales bottleneck

operators within a site and across sites to handle computational and network

bottleneck respectively, and (3) Query re-planning: which further re-evaluates the

execution plan of a query. WASP can automatically determine which adaptation ac-

tion to take depending on the types of queries, dynamics, and optimization goals.

Experimental evaluation shows that WASP is able to handle wide-area dynamics

with low overhead and without sacrificing quality.

• Finally, we extend the adaptation policy of WASP into a multi-query environment

where multiple queries may compete for common resources. We demonstrate

that adapting each query independently without considering the deployment of

the other queries may lead to a sub-optimal adaptation which results in wasteful

resource consumption and/or degrade the overall execution performance of the

queries. We propose Nako: an adaptation module for multi-query executions in

the context of wide-area streaming analytics. Nako uses an adaptation cost metric

to determine which queries need to be adapted. The adaptation cost is computed

based on the overhead and the resource consumption of adapting a query. Nako

can selectively adapt only a small number queries to resolve common execution

bottlenecks. Experimental evaluation shows that Nako’s adaptation policy results

in a more efficient adaptation compared to an existing technique that adapts

queries independently.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Challenges in Geo-Distributed Data Analytics
	Thesis Contributions and Outline

	Resource Sharing in Geo-Distributed Edge Cloud
	Introduction
	Problem Context
	Application/Query Model
	Edge Cloud System Model

	Awan: Geo-Distributed Resource Manager
	Limitations of Existing Cluster Resource Managers
	Awan Resource Manager
	Resource Lease
	Lease Estimation and Enforcement

	Locality-based Priority Scheduling
	Experimental Evaluation
	Leased-based Resource Sharing
	Lease Estimation
	Locality-based Priority Scheduling

	Related Work
	Conclusion

	Multi-Query Optimization in Wide-Area Streaming Analytics
	Introduction
	Background and Motivation
	Wide-Area Streaming Analytics
	Benefits of Multi-Query Optimization in Wide-Area Settings

	Sana: System Architecture
	Multi-Query Optimization
	Sharing Opportunities
	Sharing Across Multiple Queries

	WAN-Aware Optimization
	WAN-Aware Query Planning
	WAN-Aware Operator Scheduling

	Implementation
	Experimental Evaluation
	Baseline System Comparison
	Impact of Degree of Sharing
	WAN-Aware Sharing: Bandwidth Utilization vs. Performance
	Potential Bandwidth Saving

	Related Work
	Conclusion

	WASP: Wide-area Adaptive Stream Processing
	Introduction
	Background & Motivation
	Wide-area Streaming Systems
	Wide-area Resource Constraints

	WASP Overview
	Query Execution Model & Monitoring
	Optimization-Based Adaptation
	Task Re-Assignment
	Operator Scaling
	Query Re-Planning

	WASP's Adaptation Policy
	Adaptability Technique Comparison
	Determining Factors

	Discussion & Assumptions
	Implementation
	Experimental Evaluation
	Methodology
	Adapting to Wide-area Dynamics
	Re-Assign vs. Scale vs. Re-Plan
	WASP in a Live Environment
	Mitigating Adaptation Overhead

	Related Work
	Conclusion

	Multi-Query Adaptation in Wide-Area Streaming Systems
	Introduction
	Motivation
	Adaptation Cost
	Resource Consumption Cost
	Overhead Cost

	Multiple Query Adaptation
	Adaptation Flow
	Adapting Shared Execution

	Experimental Evaluation
	SLO vs. Cost-based Adaptation
	Resource Consumption vs. Overhead Trade-off
	Shared Query Adaptation

	Related Work
	Conclusion

	Future Research Directions
	Machine Learning for Data Analytics Systems
	Pushing Data Analytics Further to the Edge

	Conclusion

